This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Subset law for projective subspace sum. ( unss1 analog.) (Contributed by NM, 7-Mar-2012)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | padd0.a | ⊢ 𝐴 = ( Atoms ‘ 𝐾 ) | |
| padd0.p | ⊢ + = ( +𝑃 ‘ 𝐾 ) | ||
| Assertion | paddss1 | ⊢ ( ( 𝐾 ∈ 𝐵 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴 ) → ( 𝑋 ⊆ 𝑌 → ( 𝑋 + 𝑍 ) ⊆ ( 𝑌 + 𝑍 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | padd0.a | ⊢ 𝐴 = ( Atoms ‘ 𝐾 ) | |
| 2 | padd0.p | ⊢ + = ( +𝑃 ‘ 𝐾 ) | |
| 3 | ssel | ⊢ ( 𝑋 ⊆ 𝑌 → ( 𝑝 ∈ 𝑋 → 𝑝 ∈ 𝑌 ) ) | |
| 4 | 3 | orim1d | ⊢ ( 𝑋 ⊆ 𝑌 → ( ( 𝑝 ∈ 𝑋 ∨ 𝑝 ∈ 𝑍 ) → ( 𝑝 ∈ 𝑌 ∨ 𝑝 ∈ 𝑍 ) ) ) |
| 5 | ssrexv | ⊢ ( 𝑋 ⊆ 𝑌 → ( ∃ 𝑞 ∈ 𝑋 ∃ 𝑟 ∈ 𝑍 𝑝 ( le ‘ 𝐾 ) ( 𝑞 ( join ‘ 𝐾 ) 𝑟 ) → ∃ 𝑞 ∈ 𝑌 ∃ 𝑟 ∈ 𝑍 𝑝 ( le ‘ 𝐾 ) ( 𝑞 ( join ‘ 𝐾 ) 𝑟 ) ) ) | |
| 6 | 5 | anim2d | ⊢ ( 𝑋 ⊆ 𝑌 → ( ( 𝑝 ∈ 𝐴 ∧ ∃ 𝑞 ∈ 𝑋 ∃ 𝑟 ∈ 𝑍 𝑝 ( le ‘ 𝐾 ) ( 𝑞 ( join ‘ 𝐾 ) 𝑟 ) ) → ( 𝑝 ∈ 𝐴 ∧ ∃ 𝑞 ∈ 𝑌 ∃ 𝑟 ∈ 𝑍 𝑝 ( le ‘ 𝐾 ) ( 𝑞 ( join ‘ 𝐾 ) 𝑟 ) ) ) ) |
| 7 | 4 6 | orim12d | ⊢ ( 𝑋 ⊆ 𝑌 → ( ( ( 𝑝 ∈ 𝑋 ∨ 𝑝 ∈ 𝑍 ) ∨ ( 𝑝 ∈ 𝐴 ∧ ∃ 𝑞 ∈ 𝑋 ∃ 𝑟 ∈ 𝑍 𝑝 ( le ‘ 𝐾 ) ( 𝑞 ( join ‘ 𝐾 ) 𝑟 ) ) ) → ( ( 𝑝 ∈ 𝑌 ∨ 𝑝 ∈ 𝑍 ) ∨ ( 𝑝 ∈ 𝐴 ∧ ∃ 𝑞 ∈ 𝑌 ∃ 𝑟 ∈ 𝑍 𝑝 ( le ‘ 𝐾 ) ( 𝑞 ( join ‘ 𝐾 ) 𝑟 ) ) ) ) ) |
| 8 | 7 | adantl | ⊢ ( ( ( 𝐾 ∈ 𝐵 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴 ) ∧ 𝑋 ⊆ 𝑌 ) → ( ( ( 𝑝 ∈ 𝑋 ∨ 𝑝 ∈ 𝑍 ) ∨ ( 𝑝 ∈ 𝐴 ∧ ∃ 𝑞 ∈ 𝑋 ∃ 𝑟 ∈ 𝑍 𝑝 ( le ‘ 𝐾 ) ( 𝑞 ( join ‘ 𝐾 ) 𝑟 ) ) ) → ( ( 𝑝 ∈ 𝑌 ∨ 𝑝 ∈ 𝑍 ) ∨ ( 𝑝 ∈ 𝐴 ∧ ∃ 𝑞 ∈ 𝑌 ∃ 𝑟 ∈ 𝑍 𝑝 ( le ‘ 𝐾 ) ( 𝑞 ( join ‘ 𝐾 ) 𝑟 ) ) ) ) ) |
| 9 | simpl1 | ⊢ ( ( ( 𝐾 ∈ 𝐵 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴 ) ∧ 𝑋 ⊆ 𝑌 ) → 𝐾 ∈ 𝐵 ) | |
| 10 | sstr | ⊢ ( ( 𝑋 ⊆ 𝑌 ∧ 𝑌 ⊆ 𝐴 ) → 𝑋 ⊆ 𝐴 ) | |
| 11 | 10 | 3ad2antr2 | ⊢ ( ( 𝑋 ⊆ 𝑌 ∧ ( 𝐾 ∈ 𝐵 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴 ) ) → 𝑋 ⊆ 𝐴 ) |
| 12 | 11 | ancoms | ⊢ ( ( ( 𝐾 ∈ 𝐵 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴 ) ∧ 𝑋 ⊆ 𝑌 ) → 𝑋 ⊆ 𝐴 ) |
| 13 | simpl3 | ⊢ ( ( ( 𝐾 ∈ 𝐵 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴 ) ∧ 𝑋 ⊆ 𝑌 ) → 𝑍 ⊆ 𝐴 ) | |
| 14 | eqid | ⊢ ( le ‘ 𝐾 ) = ( le ‘ 𝐾 ) | |
| 15 | eqid | ⊢ ( join ‘ 𝐾 ) = ( join ‘ 𝐾 ) | |
| 16 | 14 15 1 2 | elpadd | ⊢ ( ( 𝐾 ∈ 𝐵 ∧ 𝑋 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴 ) → ( 𝑝 ∈ ( 𝑋 + 𝑍 ) ↔ ( ( 𝑝 ∈ 𝑋 ∨ 𝑝 ∈ 𝑍 ) ∨ ( 𝑝 ∈ 𝐴 ∧ ∃ 𝑞 ∈ 𝑋 ∃ 𝑟 ∈ 𝑍 𝑝 ( le ‘ 𝐾 ) ( 𝑞 ( join ‘ 𝐾 ) 𝑟 ) ) ) ) ) |
| 17 | 9 12 13 16 | syl3anc | ⊢ ( ( ( 𝐾 ∈ 𝐵 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴 ) ∧ 𝑋 ⊆ 𝑌 ) → ( 𝑝 ∈ ( 𝑋 + 𝑍 ) ↔ ( ( 𝑝 ∈ 𝑋 ∨ 𝑝 ∈ 𝑍 ) ∨ ( 𝑝 ∈ 𝐴 ∧ ∃ 𝑞 ∈ 𝑋 ∃ 𝑟 ∈ 𝑍 𝑝 ( le ‘ 𝐾 ) ( 𝑞 ( join ‘ 𝐾 ) 𝑟 ) ) ) ) ) |
| 18 | 14 15 1 2 | elpadd | ⊢ ( ( 𝐾 ∈ 𝐵 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴 ) → ( 𝑝 ∈ ( 𝑌 + 𝑍 ) ↔ ( ( 𝑝 ∈ 𝑌 ∨ 𝑝 ∈ 𝑍 ) ∨ ( 𝑝 ∈ 𝐴 ∧ ∃ 𝑞 ∈ 𝑌 ∃ 𝑟 ∈ 𝑍 𝑝 ( le ‘ 𝐾 ) ( 𝑞 ( join ‘ 𝐾 ) 𝑟 ) ) ) ) ) |
| 19 | 18 | adantr | ⊢ ( ( ( 𝐾 ∈ 𝐵 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴 ) ∧ 𝑋 ⊆ 𝑌 ) → ( 𝑝 ∈ ( 𝑌 + 𝑍 ) ↔ ( ( 𝑝 ∈ 𝑌 ∨ 𝑝 ∈ 𝑍 ) ∨ ( 𝑝 ∈ 𝐴 ∧ ∃ 𝑞 ∈ 𝑌 ∃ 𝑟 ∈ 𝑍 𝑝 ( le ‘ 𝐾 ) ( 𝑞 ( join ‘ 𝐾 ) 𝑟 ) ) ) ) ) |
| 20 | 8 17 19 | 3imtr4d | ⊢ ( ( ( 𝐾 ∈ 𝐵 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴 ) ∧ 𝑋 ⊆ 𝑌 ) → ( 𝑝 ∈ ( 𝑋 + 𝑍 ) → 𝑝 ∈ ( 𝑌 + 𝑍 ) ) ) |
| 21 | 20 | ssrdv | ⊢ ( ( ( 𝐾 ∈ 𝐵 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴 ) ∧ 𝑋 ⊆ 𝑌 ) → ( 𝑋 + 𝑍 ) ⊆ ( 𝑌 + 𝑍 ) ) |
| 22 | 21 | ex | ⊢ ( ( 𝐾 ∈ 𝐵 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴 ) → ( 𝑋 ⊆ 𝑌 → ( 𝑋 + 𝑍 ) ⊆ ( 𝑌 + 𝑍 ) ) ) |