This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Indexed intersection with an unordered pair index. (Contributed by NM, 25-Jan-2012)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | iinxprg.1 | ⊢ ( 𝑥 = 𝐴 → 𝐶 = 𝐷 ) | |
| iinxprg.2 | ⊢ ( 𝑥 = 𝐵 → 𝐶 = 𝐸 ) | ||
| Assertion | iinxprg | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ∩ 𝑥 ∈ { 𝐴 , 𝐵 } 𝐶 = ( 𝐷 ∩ 𝐸 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iinxprg.1 | ⊢ ( 𝑥 = 𝐴 → 𝐶 = 𝐷 ) | |
| 2 | iinxprg.2 | ⊢ ( 𝑥 = 𝐵 → 𝐶 = 𝐸 ) | |
| 3 | 1 | eleq2d | ⊢ ( 𝑥 = 𝐴 → ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐷 ) ) |
| 4 | 2 | eleq2d | ⊢ ( 𝑥 = 𝐵 → ( 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ 𝐸 ) ) |
| 5 | 3 4 | ralprg | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( ∀ 𝑥 ∈ { 𝐴 , 𝐵 } 𝑦 ∈ 𝐶 ↔ ( 𝑦 ∈ 𝐷 ∧ 𝑦 ∈ 𝐸 ) ) ) |
| 6 | 5 | abbidv | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → { 𝑦 ∣ ∀ 𝑥 ∈ { 𝐴 , 𝐵 } 𝑦 ∈ 𝐶 } = { 𝑦 ∣ ( 𝑦 ∈ 𝐷 ∧ 𝑦 ∈ 𝐸 ) } ) |
| 7 | df-iin | ⊢ ∩ 𝑥 ∈ { 𝐴 , 𝐵 } 𝐶 = { 𝑦 ∣ ∀ 𝑥 ∈ { 𝐴 , 𝐵 } 𝑦 ∈ 𝐶 } | |
| 8 | df-in | ⊢ ( 𝐷 ∩ 𝐸 ) = { 𝑦 ∣ ( 𝑦 ∈ 𝐷 ∧ 𝑦 ∈ 𝐸 ) } | |
| 9 | 6 7 8 | 3eqtr4g | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ∩ 𝑥 ∈ { 𝐴 , 𝐵 } 𝐶 = ( 𝐷 ∩ 𝐸 ) ) |