This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The projective map of a Hilbert lattice. (Contributed by NM, 2-Oct-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pmapfval.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| pmapfval.l | ⊢ ≤ = ( le ‘ 𝐾 ) | ||
| pmapfval.a | ⊢ 𝐴 = ( Atoms ‘ 𝐾 ) | ||
| pmapfval.m | ⊢ 𝑀 = ( pmap ‘ 𝐾 ) | ||
| Assertion | pmapfval | ⊢ ( 𝐾 ∈ 𝐶 → 𝑀 = ( 𝑥 ∈ 𝐵 ↦ { 𝑎 ∈ 𝐴 ∣ 𝑎 ≤ 𝑥 } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pmapfval.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| 2 | pmapfval.l | ⊢ ≤ = ( le ‘ 𝐾 ) | |
| 3 | pmapfval.a | ⊢ 𝐴 = ( Atoms ‘ 𝐾 ) | |
| 4 | pmapfval.m | ⊢ 𝑀 = ( pmap ‘ 𝐾 ) | |
| 5 | elex | ⊢ ( 𝐾 ∈ 𝐶 → 𝐾 ∈ V ) | |
| 6 | fveq2 | ⊢ ( 𝑘 = 𝐾 → ( Base ‘ 𝑘 ) = ( Base ‘ 𝐾 ) ) | |
| 7 | 6 1 | eqtr4di | ⊢ ( 𝑘 = 𝐾 → ( Base ‘ 𝑘 ) = 𝐵 ) |
| 8 | fveq2 | ⊢ ( 𝑘 = 𝐾 → ( Atoms ‘ 𝑘 ) = ( Atoms ‘ 𝐾 ) ) | |
| 9 | 8 3 | eqtr4di | ⊢ ( 𝑘 = 𝐾 → ( Atoms ‘ 𝑘 ) = 𝐴 ) |
| 10 | fveq2 | ⊢ ( 𝑘 = 𝐾 → ( le ‘ 𝑘 ) = ( le ‘ 𝐾 ) ) | |
| 11 | 10 2 | eqtr4di | ⊢ ( 𝑘 = 𝐾 → ( le ‘ 𝑘 ) = ≤ ) |
| 12 | 11 | breqd | ⊢ ( 𝑘 = 𝐾 → ( 𝑎 ( le ‘ 𝑘 ) 𝑥 ↔ 𝑎 ≤ 𝑥 ) ) |
| 13 | 9 12 | rabeqbidv | ⊢ ( 𝑘 = 𝐾 → { 𝑎 ∈ ( Atoms ‘ 𝑘 ) ∣ 𝑎 ( le ‘ 𝑘 ) 𝑥 } = { 𝑎 ∈ 𝐴 ∣ 𝑎 ≤ 𝑥 } ) |
| 14 | 7 13 | mpteq12dv | ⊢ ( 𝑘 = 𝐾 → ( 𝑥 ∈ ( Base ‘ 𝑘 ) ↦ { 𝑎 ∈ ( Atoms ‘ 𝑘 ) ∣ 𝑎 ( le ‘ 𝑘 ) 𝑥 } ) = ( 𝑥 ∈ 𝐵 ↦ { 𝑎 ∈ 𝐴 ∣ 𝑎 ≤ 𝑥 } ) ) |
| 15 | df-pmap | ⊢ pmap = ( 𝑘 ∈ V ↦ ( 𝑥 ∈ ( Base ‘ 𝑘 ) ↦ { 𝑎 ∈ ( Atoms ‘ 𝑘 ) ∣ 𝑎 ( le ‘ 𝑘 ) 𝑥 } ) ) | |
| 16 | 14 15 1 | mptfvmpt | ⊢ ( 𝐾 ∈ V → ( pmap ‘ 𝐾 ) = ( 𝑥 ∈ 𝐵 ↦ { 𝑎 ∈ 𝐴 ∣ 𝑎 ≤ 𝑥 } ) ) |
| 17 | 4 16 | eqtrid | ⊢ ( 𝐾 ∈ V → 𝑀 = ( 𝑥 ∈ 𝐵 ↦ { 𝑎 ∈ 𝐴 ∣ 𝑎 ≤ 𝑥 } ) ) |
| 18 | 5 17 | syl | ⊢ ( 𝐾 ∈ 𝐶 → 𝑀 = ( 𝑥 ∈ 𝐵 ↦ { 𝑎 ∈ 𝐴 ∣ 𝑎 ≤ 𝑥 } ) ) |