This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The projective map of a Hilbert lattice. (Contributed by NM, 2-Oct-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pmapfval.b | |- B = ( Base ` K ) |
|
| pmapfval.l | |- .<_ = ( le ` K ) |
||
| pmapfval.a | |- A = ( Atoms ` K ) |
||
| pmapfval.m | |- M = ( pmap ` K ) |
||
| Assertion | pmapfval | |- ( K e. C -> M = ( x e. B |-> { a e. A | a .<_ x } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pmapfval.b | |- B = ( Base ` K ) |
|
| 2 | pmapfval.l | |- .<_ = ( le ` K ) |
|
| 3 | pmapfval.a | |- A = ( Atoms ` K ) |
|
| 4 | pmapfval.m | |- M = ( pmap ` K ) |
|
| 5 | elex | |- ( K e. C -> K e. _V ) |
|
| 6 | fveq2 | |- ( k = K -> ( Base ` k ) = ( Base ` K ) ) |
|
| 7 | 6 1 | eqtr4di | |- ( k = K -> ( Base ` k ) = B ) |
| 8 | fveq2 | |- ( k = K -> ( Atoms ` k ) = ( Atoms ` K ) ) |
|
| 9 | 8 3 | eqtr4di | |- ( k = K -> ( Atoms ` k ) = A ) |
| 10 | fveq2 | |- ( k = K -> ( le ` k ) = ( le ` K ) ) |
|
| 11 | 10 2 | eqtr4di | |- ( k = K -> ( le ` k ) = .<_ ) |
| 12 | 11 | breqd | |- ( k = K -> ( a ( le ` k ) x <-> a .<_ x ) ) |
| 13 | 9 12 | rabeqbidv | |- ( k = K -> { a e. ( Atoms ` k ) | a ( le ` k ) x } = { a e. A | a .<_ x } ) |
| 14 | 7 13 | mpteq12dv | |- ( k = K -> ( x e. ( Base ` k ) |-> { a e. ( Atoms ` k ) | a ( le ` k ) x } ) = ( x e. B |-> { a e. A | a .<_ x } ) ) |
| 15 | df-pmap | |- pmap = ( k e. _V |-> ( x e. ( Base ` k ) |-> { a e. ( Atoms ` k ) | a ( le ` k ) x } ) ) |
|
| 16 | 14 15 1 | mptfvmpt | |- ( K e. _V -> ( pmap ` K ) = ( x e. B |-> { a e. A | a .<_ x } ) ) |
| 17 | 4 16 | eqtrid | |- ( K e. _V -> M = ( x e. B |-> { a e. A | a .<_ x } ) ) |
| 18 | 5 17 | syl | |- ( K e. C -> M = ( x e. B |-> { a e. A | a .<_ x } ) ) |