This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define projective map for k at a . Definition in Theorem 15.5 of MaedaMaeda p. 62. (Contributed by NM, 2-Oct-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-pmap | ⊢ pmap = ( 𝑘 ∈ V ↦ ( 𝑎 ∈ ( Base ‘ 𝑘 ) ↦ { 𝑝 ∈ ( Atoms ‘ 𝑘 ) ∣ 𝑝 ( le ‘ 𝑘 ) 𝑎 } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cpmap | ⊢ pmap | |
| 1 | vk | ⊢ 𝑘 | |
| 2 | cvv | ⊢ V | |
| 3 | va | ⊢ 𝑎 | |
| 4 | cbs | ⊢ Base | |
| 5 | 1 | cv | ⊢ 𝑘 |
| 6 | 5 4 | cfv | ⊢ ( Base ‘ 𝑘 ) |
| 7 | vp | ⊢ 𝑝 | |
| 8 | catm | ⊢ Atoms | |
| 9 | 5 8 | cfv | ⊢ ( Atoms ‘ 𝑘 ) |
| 10 | 7 | cv | ⊢ 𝑝 |
| 11 | cple | ⊢ le | |
| 12 | 5 11 | cfv | ⊢ ( le ‘ 𝑘 ) |
| 13 | 3 | cv | ⊢ 𝑎 |
| 14 | 10 13 12 | wbr | ⊢ 𝑝 ( le ‘ 𝑘 ) 𝑎 |
| 15 | 14 7 9 | crab | ⊢ { 𝑝 ∈ ( Atoms ‘ 𝑘 ) ∣ 𝑝 ( le ‘ 𝑘 ) 𝑎 } |
| 16 | 3 6 15 | cmpt | ⊢ ( 𝑎 ∈ ( Base ‘ 𝑘 ) ↦ { 𝑝 ∈ ( Atoms ‘ 𝑘 ) ∣ 𝑝 ( le ‘ 𝑘 ) 𝑎 } ) |
| 17 | 1 2 16 | cmpt | ⊢ ( 𝑘 ∈ V ↦ ( 𝑎 ∈ ( Base ‘ 𝑘 ) ↦ { 𝑝 ∈ ( Atoms ‘ 𝑘 ) ∣ 𝑝 ( le ‘ 𝑘 ) 𝑎 } ) ) |
| 18 | 0 17 | wceq | ⊢ pmap = ( 𝑘 ∈ V ↦ ( 𝑎 ∈ ( Base ‘ 𝑘 ) ↦ { 𝑝 ∈ ( Atoms ‘ 𝑘 ) ∣ 𝑝 ( le ‘ 𝑘 ) 𝑎 } ) ) |