This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The projective map of an atom. (Contributed by NM, 25-Jan-2012)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pmapat.a | |- A = ( Atoms ` K ) |
|
| pmapat.m | |- M = ( pmap ` K ) |
||
| Assertion | pmapat | |- ( ( K e. HL /\ P e. A ) -> ( M ` P ) = { P } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pmapat.a | |- A = ( Atoms ` K ) |
|
| 2 | pmapat.m | |- M = ( pmap ` K ) |
|
| 3 | eqid | |- ( Base ` K ) = ( Base ` K ) |
|
| 4 | 3 1 | atbase | |- ( P e. A -> P e. ( Base ` K ) ) |
| 5 | eqid | |- ( le ` K ) = ( le ` K ) |
|
| 6 | 3 5 1 2 | pmapval | |- ( ( K e. HL /\ P e. ( Base ` K ) ) -> ( M ` P ) = { q e. A | q ( le ` K ) P } ) |
| 7 | 4 6 | sylan2 | |- ( ( K e. HL /\ P e. A ) -> ( M ` P ) = { q e. A | q ( le ` K ) P } ) |
| 8 | hlatl | |- ( K e. HL -> K e. AtLat ) |
|
| 9 | 8 | ad2antrr | |- ( ( ( K e. HL /\ P e. A ) /\ q e. A ) -> K e. AtLat ) |
| 10 | simpr | |- ( ( ( K e. HL /\ P e. A ) /\ q e. A ) -> q e. A ) |
|
| 11 | simplr | |- ( ( ( K e. HL /\ P e. A ) /\ q e. A ) -> P e. A ) |
|
| 12 | 5 1 | atcmp | |- ( ( K e. AtLat /\ q e. A /\ P e. A ) -> ( q ( le ` K ) P <-> q = P ) ) |
| 13 | 9 10 11 12 | syl3anc | |- ( ( ( K e. HL /\ P e. A ) /\ q e. A ) -> ( q ( le ` K ) P <-> q = P ) ) |
| 14 | 13 | rabbidva | |- ( ( K e. HL /\ P e. A ) -> { q e. A | q ( le ` K ) P } = { q e. A | q = P } ) |
| 15 | rabsn | |- ( P e. A -> { q e. A | q = P } = { P } ) |
|
| 16 | 15 | adantl | |- ( ( K e. HL /\ P e. A ) -> { q e. A | q = P } = { P } ) |
| 17 | 7 14 16 | 3eqtrd | |- ( ( K e. HL /\ P e. A ) -> ( M ` P ) = { P } ) |