This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Compare theorem *13.183 in WhiteheadRussell p. 178. Only A is required to be a set. (Contributed by Andrew Salmon, 3-Jun-2011) Avoid ax-13 . (Revised by Wolf Lammen, 29-Apr-2023)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pm13.183 | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝐴 = 𝐵 ↔ ∀ 𝑧 ( 𝑧 = 𝐴 ↔ 𝑧 = 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqeq1 | ⊢ ( 𝑦 = 𝐴 → ( 𝑦 = 𝐵 ↔ 𝐴 = 𝐵 ) ) | |
| 2 | eqeq2 | ⊢ ( 𝑦 = 𝐴 → ( 𝑧 = 𝑦 ↔ 𝑧 = 𝐴 ) ) | |
| 3 | 2 | bibi1d | ⊢ ( 𝑦 = 𝐴 → ( ( 𝑧 = 𝑦 ↔ 𝑧 = 𝐵 ) ↔ ( 𝑧 = 𝐴 ↔ 𝑧 = 𝐵 ) ) ) |
| 4 | 3 | albidv | ⊢ ( 𝑦 = 𝐴 → ( ∀ 𝑧 ( 𝑧 = 𝑦 ↔ 𝑧 = 𝐵 ) ↔ ∀ 𝑧 ( 𝑧 = 𝐴 ↔ 𝑧 = 𝐵 ) ) ) |
| 5 | eqeq2 | ⊢ ( 𝑦 = 𝐵 → ( 𝑧 = 𝑦 ↔ 𝑧 = 𝐵 ) ) | |
| 6 | 5 | alrimiv | ⊢ ( 𝑦 = 𝐵 → ∀ 𝑧 ( 𝑧 = 𝑦 ↔ 𝑧 = 𝐵 ) ) |
| 7 | stdpc4 | ⊢ ( ∀ 𝑧 ( 𝑧 = 𝑦 ↔ 𝑧 = 𝐵 ) → [ 𝑦 / 𝑧 ] ( 𝑧 = 𝑦 ↔ 𝑧 = 𝐵 ) ) | |
| 8 | sbbi | ⊢ ( [ 𝑦 / 𝑧 ] ( 𝑧 = 𝑦 ↔ 𝑧 = 𝐵 ) ↔ ( [ 𝑦 / 𝑧 ] 𝑧 = 𝑦 ↔ [ 𝑦 / 𝑧 ] 𝑧 = 𝐵 ) ) | |
| 9 | equsb1v | ⊢ [ 𝑦 / 𝑧 ] 𝑧 = 𝑦 | |
| 10 | 9 | tbt | ⊢ ( [ 𝑦 / 𝑧 ] 𝑧 = 𝐵 ↔ ( [ 𝑦 / 𝑧 ] 𝑧 = 𝐵 ↔ [ 𝑦 / 𝑧 ] 𝑧 = 𝑦 ) ) |
| 11 | bicom | ⊢ ( ( [ 𝑦 / 𝑧 ] 𝑧 = 𝐵 ↔ [ 𝑦 / 𝑧 ] 𝑧 = 𝑦 ) ↔ ( [ 𝑦 / 𝑧 ] 𝑧 = 𝑦 ↔ [ 𝑦 / 𝑧 ] 𝑧 = 𝐵 ) ) | |
| 12 | 10 11 | bitri | ⊢ ( [ 𝑦 / 𝑧 ] 𝑧 = 𝐵 ↔ ( [ 𝑦 / 𝑧 ] 𝑧 = 𝑦 ↔ [ 𝑦 / 𝑧 ] 𝑧 = 𝐵 ) ) |
| 13 | eqsb1 | ⊢ ( [ 𝑦 / 𝑧 ] 𝑧 = 𝐵 ↔ 𝑦 = 𝐵 ) | |
| 14 | 8 12 13 | 3bitr2i | ⊢ ( [ 𝑦 / 𝑧 ] ( 𝑧 = 𝑦 ↔ 𝑧 = 𝐵 ) ↔ 𝑦 = 𝐵 ) |
| 15 | 7 14 | sylib | ⊢ ( ∀ 𝑧 ( 𝑧 = 𝑦 ↔ 𝑧 = 𝐵 ) → 𝑦 = 𝐵 ) |
| 16 | 6 15 | impbii | ⊢ ( 𝑦 = 𝐵 ↔ ∀ 𝑧 ( 𝑧 = 𝑦 ↔ 𝑧 = 𝐵 ) ) |
| 17 | 1 4 16 | vtoclbg | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝐴 = 𝐵 ↔ ∀ 𝑧 ( 𝑧 = 𝐴 ↔ 𝑧 = 𝐵 ) ) ) |