This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Compare theorem *13.183 in WhiteheadRussell p. 178. Only A is required to be a set. (Contributed by Andrew Salmon, 3-Jun-2011) Avoid ax-13 . (Revised by Wolf Lammen, 29-Apr-2023)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pm13.183 | |- ( A e. V -> ( A = B <-> A. z ( z = A <-> z = B ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqeq1 | |- ( y = A -> ( y = B <-> A = B ) ) |
|
| 2 | eqeq2 | |- ( y = A -> ( z = y <-> z = A ) ) |
|
| 3 | 2 | bibi1d | |- ( y = A -> ( ( z = y <-> z = B ) <-> ( z = A <-> z = B ) ) ) |
| 4 | 3 | albidv | |- ( y = A -> ( A. z ( z = y <-> z = B ) <-> A. z ( z = A <-> z = B ) ) ) |
| 5 | eqeq2 | |- ( y = B -> ( z = y <-> z = B ) ) |
|
| 6 | 5 | alrimiv | |- ( y = B -> A. z ( z = y <-> z = B ) ) |
| 7 | stdpc4 | |- ( A. z ( z = y <-> z = B ) -> [ y / z ] ( z = y <-> z = B ) ) |
|
| 8 | sbbi | |- ( [ y / z ] ( z = y <-> z = B ) <-> ( [ y / z ] z = y <-> [ y / z ] z = B ) ) |
|
| 9 | equsb1v | |- [ y / z ] z = y |
|
| 10 | 9 | tbt | |- ( [ y / z ] z = B <-> ( [ y / z ] z = B <-> [ y / z ] z = y ) ) |
| 11 | bicom | |- ( ( [ y / z ] z = B <-> [ y / z ] z = y ) <-> ( [ y / z ] z = y <-> [ y / z ] z = B ) ) |
|
| 12 | 10 11 | bitri | |- ( [ y / z ] z = B <-> ( [ y / z ] z = y <-> [ y / z ] z = B ) ) |
| 13 | eqsb1 | |- ( [ y / z ] z = B <-> y = B ) |
|
| 14 | 8 12 13 | 3bitr2i | |- ( [ y / z ] ( z = y <-> z = B ) <-> y = B ) |
| 15 | 7 14 | sylib | |- ( A. z ( z = y <-> z = B ) -> y = B ) |
| 16 | 6 15 | impbii | |- ( y = B <-> A. z ( z = y <-> z = B ) ) |
| 17 | 1 4 16 | vtoclbg | |- ( A e. V -> ( A = B <-> A. z ( z = A <-> z = B ) ) ) |