This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: "Less than" implies not converse "less than or equal to". (Contributed by NM, 18-Oct-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pleval2.b | |- B = ( Base ` K ) |
|
| pleval2.l | |- .<_ = ( le ` K ) |
||
| pleval2.s | |- .< = ( lt ` K ) |
||
| Assertion | pltnle | |- ( ( ( K e. Poset /\ X e. B /\ Y e. B ) /\ X .< Y ) -> -. Y .<_ X ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pleval2.b | |- B = ( Base ` K ) |
|
| 2 | pleval2.l | |- .<_ = ( le ` K ) |
|
| 3 | pleval2.s | |- .< = ( lt ` K ) |
|
| 4 | 2 3 | pltval | |- ( ( K e. Poset /\ X e. B /\ Y e. B ) -> ( X .< Y <-> ( X .<_ Y /\ X =/= Y ) ) ) |
| 5 | 1 2 | posasymb | |- ( ( K e. Poset /\ X e. B /\ Y e. B ) -> ( ( X .<_ Y /\ Y .<_ X ) <-> X = Y ) ) |
| 6 | 5 | biimpd | |- ( ( K e. Poset /\ X e. B /\ Y e. B ) -> ( ( X .<_ Y /\ Y .<_ X ) -> X = Y ) ) |
| 7 | 6 | expdimp | |- ( ( ( K e. Poset /\ X e. B /\ Y e. B ) /\ X .<_ Y ) -> ( Y .<_ X -> X = Y ) ) |
| 8 | 7 | necon3ad | |- ( ( ( K e. Poset /\ X e. B /\ Y e. B ) /\ X .<_ Y ) -> ( X =/= Y -> -. Y .<_ X ) ) |
| 9 | 8 | expimpd | |- ( ( K e. Poset /\ X e. B /\ Y e. B ) -> ( ( X .<_ Y /\ X =/= Y ) -> -. Y .<_ X ) ) |
| 10 | 4 9 | sylbid | |- ( ( K e. Poset /\ X e. B /\ Y e. B ) -> ( X .< Y -> -. Y .<_ X ) ) |
| 11 | 10 | imp | |- ( ( ( K e. Poset /\ X e. B /\ Y e. B ) /\ X .< Y ) -> -. Y .<_ X ) |