This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: One direction of pleval2 . (Contributed by Mario Carneiro, 8-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pleval2.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| pleval2.l | ⊢ ≤ = ( le ‘ 𝐾 ) | ||
| pleval2.s | ⊢ < = ( lt ‘ 𝐾 ) | ||
| Assertion | pleval2i | ⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 ≤ 𝑌 → ( 𝑋 < 𝑌 ∨ 𝑋 = 𝑌 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pleval2.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| 2 | pleval2.l | ⊢ ≤ = ( le ‘ 𝐾 ) | |
| 3 | pleval2.s | ⊢ < = ( lt ‘ 𝐾 ) | |
| 4 | elfvdm | ⊢ ( 𝑋 ∈ ( Base ‘ 𝐾 ) → 𝐾 ∈ dom Base ) | |
| 5 | 4 1 | eleq2s | ⊢ ( 𝑋 ∈ 𝐵 → 𝐾 ∈ dom Base ) |
| 6 | 5 | adantr | ⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → 𝐾 ∈ dom Base ) |
| 7 | 2 3 | pltval | ⊢ ( ( 𝐾 ∈ dom Base ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 < 𝑌 ↔ ( 𝑋 ≤ 𝑌 ∧ 𝑋 ≠ 𝑌 ) ) ) |
| 8 | 7 | 3expb | ⊢ ( ( 𝐾 ∈ dom Base ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( 𝑋 < 𝑌 ↔ ( 𝑋 ≤ 𝑌 ∧ 𝑋 ≠ 𝑌 ) ) ) |
| 9 | 6 8 | mpancom | ⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 < 𝑌 ↔ ( 𝑋 ≤ 𝑌 ∧ 𝑋 ≠ 𝑌 ) ) ) |
| 10 | 9 | biimpar | ⊢ ( ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑋 ≤ 𝑌 ∧ 𝑋 ≠ 𝑌 ) ) → 𝑋 < 𝑌 ) |
| 11 | 10 | expr | ⊢ ( ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 𝑋 ≤ 𝑌 ) → ( 𝑋 ≠ 𝑌 → 𝑋 < 𝑌 ) ) |
| 12 | 11 | necon1bd | ⊢ ( ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 𝑋 ≤ 𝑌 ) → ( ¬ 𝑋 < 𝑌 → 𝑋 = 𝑌 ) ) |
| 13 | 12 | orrd | ⊢ ( ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ 𝑋 ≤ 𝑌 ) → ( 𝑋 < 𝑌 ∨ 𝑋 = 𝑌 ) ) |
| 14 | 13 | ex | ⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 ≤ 𝑌 → ( 𝑋 < 𝑌 ∨ 𝑋 = 𝑌 ) ) ) |