This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Projection in terms of orthocomplement projection. (Contributed by NM, 5-Nov-1999) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pjpo | ⊢ ( ( 𝐻 ∈ Cℋ ∧ 𝐴 ∈ ℋ ) → ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) = ( 𝐴 −ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | choccl | ⊢ ( 𝐻 ∈ Cℋ → ( ⊥ ‘ 𝐻 ) ∈ Cℋ ) | |
| 2 | pjhcl | ⊢ ( ( ( ⊥ ‘ 𝐻 ) ∈ Cℋ ∧ 𝐴 ∈ ℋ ) → ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) ∈ ℋ ) | |
| 3 | 1 2 | sylan | ⊢ ( ( 𝐻 ∈ Cℋ ∧ 𝐴 ∈ ℋ ) → ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) ∈ ℋ ) |
| 4 | pjhcl | ⊢ ( ( 𝐻 ∈ Cℋ ∧ 𝐴 ∈ ℋ ) → ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ∈ ℋ ) | |
| 5 | ax-hvcom | ⊢ ( ( ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) ∈ ℋ ∧ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ∈ ℋ ) → ( ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) +ℎ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) = ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) +ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) ) ) | |
| 6 | 3 4 5 | syl2anc | ⊢ ( ( 𝐻 ∈ Cℋ ∧ 𝐴 ∈ ℋ ) → ( ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) +ℎ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) = ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) +ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) ) ) |
| 7 | axpjpj | ⊢ ( ( 𝐻 ∈ Cℋ ∧ 𝐴 ∈ ℋ ) → 𝐴 = ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) +ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) ) ) | |
| 8 | 6 7 | eqtr4d | ⊢ ( ( 𝐻 ∈ Cℋ ∧ 𝐴 ∈ ℋ ) → ( ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) +ℎ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) = 𝐴 ) |
| 9 | simpr | ⊢ ( ( 𝐻 ∈ Cℋ ∧ 𝐴 ∈ ℋ ) → 𝐴 ∈ ℋ ) | |
| 10 | hvsubadd | ⊢ ( ( 𝐴 ∈ ℋ ∧ ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) ∈ ℋ ∧ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ∈ ℋ ) → ( ( 𝐴 −ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) ) = ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ↔ ( ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) +ℎ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) = 𝐴 ) ) | |
| 11 | 9 3 4 10 | syl3anc | ⊢ ( ( 𝐻 ∈ Cℋ ∧ 𝐴 ∈ ℋ ) → ( ( 𝐴 −ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) ) = ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ↔ ( ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) +ℎ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) = 𝐴 ) ) |
| 12 | 8 11 | mpbird | ⊢ ( ( 𝐻 ∈ Cℋ ∧ 𝐴 ∈ ℋ ) → ( 𝐴 −ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) ) = ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) |
| 13 | 12 | eqcomd | ⊢ ( ( 𝐻 ∈ Cℋ ∧ 𝐴 ∈ ℋ ) → ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) = ( 𝐴 −ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) ) ) |