This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Projection in terms of orthocomplement projection. (Contributed by NM, 5-Nov-1999) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pjpo | |- ( ( H e. CH /\ A e. ~H ) -> ( ( projh ` H ) ` A ) = ( A -h ( ( projh ` ( _|_ ` H ) ) ` A ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | choccl | |- ( H e. CH -> ( _|_ ` H ) e. CH ) |
|
| 2 | pjhcl | |- ( ( ( _|_ ` H ) e. CH /\ A e. ~H ) -> ( ( projh ` ( _|_ ` H ) ) ` A ) e. ~H ) |
|
| 3 | 1 2 | sylan | |- ( ( H e. CH /\ A e. ~H ) -> ( ( projh ` ( _|_ ` H ) ) ` A ) e. ~H ) |
| 4 | pjhcl | |- ( ( H e. CH /\ A e. ~H ) -> ( ( projh ` H ) ` A ) e. ~H ) |
|
| 5 | ax-hvcom | |- ( ( ( ( projh ` ( _|_ ` H ) ) ` A ) e. ~H /\ ( ( projh ` H ) ` A ) e. ~H ) -> ( ( ( projh ` ( _|_ ` H ) ) ` A ) +h ( ( projh ` H ) ` A ) ) = ( ( ( projh ` H ) ` A ) +h ( ( projh ` ( _|_ ` H ) ) ` A ) ) ) |
|
| 6 | 3 4 5 | syl2anc | |- ( ( H e. CH /\ A e. ~H ) -> ( ( ( projh ` ( _|_ ` H ) ) ` A ) +h ( ( projh ` H ) ` A ) ) = ( ( ( projh ` H ) ` A ) +h ( ( projh ` ( _|_ ` H ) ) ` A ) ) ) |
| 7 | axpjpj | |- ( ( H e. CH /\ A e. ~H ) -> A = ( ( ( projh ` H ) ` A ) +h ( ( projh ` ( _|_ ` H ) ) ` A ) ) ) |
|
| 8 | 6 7 | eqtr4d | |- ( ( H e. CH /\ A e. ~H ) -> ( ( ( projh ` ( _|_ ` H ) ) ` A ) +h ( ( projh ` H ) ` A ) ) = A ) |
| 9 | simpr | |- ( ( H e. CH /\ A e. ~H ) -> A e. ~H ) |
|
| 10 | hvsubadd | |- ( ( A e. ~H /\ ( ( projh ` ( _|_ ` H ) ) ` A ) e. ~H /\ ( ( projh ` H ) ` A ) e. ~H ) -> ( ( A -h ( ( projh ` ( _|_ ` H ) ) ` A ) ) = ( ( projh ` H ) ` A ) <-> ( ( ( projh ` ( _|_ ` H ) ) ` A ) +h ( ( projh ` H ) ` A ) ) = A ) ) |
|
| 11 | 9 3 4 10 | syl3anc | |- ( ( H e. CH /\ A e. ~H ) -> ( ( A -h ( ( projh ` ( _|_ ` H ) ) ` A ) ) = ( ( projh ` H ) ` A ) <-> ( ( ( projh ` ( _|_ ` H ) ) ` A ) +h ( ( projh ` H ) ` A ) ) = A ) ) |
| 12 | 8 11 | mpbird | |- ( ( H e. CH /\ A e. ~H ) -> ( A -h ( ( projh ` ( _|_ ` H ) ) ` A ) ) = ( ( projh ` H ) ` A ) ) |
| 13 | 12 | eqcomd | |- ( ( H e. CH /\ A e. ~H ) -> ( ( projh ` H ) ` A ) = ( A -h ( ( projh ` ( _|_ ` H ) ) ` A ) ) ) |