This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An equivalent of the orthomodular law. Theorem 29.13(e) of MaedaMaeda p. 132. (Contributed by NM, 30-May-2004) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pjoml2.1 | ⊢ 𝐴 ∈ Cℋ | |
| pjoml2.2 | ⊢ 𝐵 ∈ Cℋ | ||
| Assertion | pjoml6i | ⊢ ( 𝐴 ⊆ 𝐵 → ∃ 𝑥 ∈ Cℋ ( 𝐴 ⊆ ( ⊥ ‘ 𝑥 ) ∧ ( 𝐴 ∨ℋ 𝑥 ) = 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pjoml2.1 | ⊢ 𝐴 ∈ Cℋ | |
| 2 | pjoml2.2 | ⊢ 𝐵 ∈ Cℋ | |
| 3 | 1 | choccli | ⊢ ( ⊥ ‘ 𝐴 ) ∈ Cℋ |
| 4 | 3 2 | chincli | ⊢ ( ( ⊥ ‘ 𝐴 ) ∩ 𝐵 ) ∈ Cℋ |
| 5 | 1 2 | pjoml2i | ⊢ ( 𝐴 ⊆ 𝐵 → ( 𝐴 ∨ℋ ( ( ⊥ ‘ 𝐴 ) ∩ 𝐵 ) ) = 𝐵 ) |
| 6 | 2 | choccli | ⊢ ( ⊥ ‘ 𝐵 ) ∈ Cℋ |
| 7 | 1 6 | chub1i | ⊢ 𝐴 ⊆ ( 𝐴 ∨ℋ ( ⊥ ‘ 𝐵 ) ) |
| 8 | 1 2 | chdmm2i | ⊢ ( ⊥ ‘ ( ( ⊥ ‘ 𝐴 ) ∩ 𝐵 ) ) = ( 𝐴 ∨ℋ ( ⊥ ‘ 𝐵 ) ) |
| 9 | 7 8 | sseqtrri | ⊢ 𝐴 ⊆ ( ⊥ ‘ ( ( ⊥ ‘ 𝐴 ) ∩ 𝐵 ) ) |
| 10 | 5 9 | jctil | ⊢ ( 𝐴 ⊆ 𝐵 → ( 𝐴 ⊆ ( ⊥ ‘ ( ( ⊥ ‘ 𝐴 ) ∩ 𝐵 ) ) ∧ ( 𝐴 ∨ℋ ( ( ⊥ ‘ 𝐴 ) ∩ 𝐵 ) ) = 𝐵 ) ) |
| 11 | fveq2 | ⊢ ( 𝑥 = ( ( ⊥ ‘ 𝐴 ) ∩ 𝐵 ) → ( ⊥ ‘ 𝑥 ) = ( ⊥ ‘ ( ( ⊥ ‘ 𝐴 ) ∩ 𝐵 ) ) ) | |
| 12 | 11 | sseq2d | ⊢ ( 𝑥 = ( ( ⊥ ‘ 𝐴 ) ∩ 𝐵 ) → ( 𝐴 ⊆ ( ⊥ ‘ 𝑥 ) ↔ 𝐴 ⊆ ( ⊥ ‘ ( ( ⊥ ‘ 𝐴 ) ∩ 𝐵 ) ) ) ) |
| 13 | oveq2 | ⊢ ( 𝑥 = ( ( ⊥ ‘ 𝐴 ) ∩ 𝐵 ) → ( 𝐴 ∨ℋ 𝑥 ) = ( 𝐴 ∨ℋ ( ( ⊥ ‘ 𝐴 ) ∩ 𝐵 ) ) ) | |
| 14 | 13 | eqeq1d | ⊢ ( 𝑥 = ( ( ⊥ ‘ 𝐴 ) ∩ 𝐵 ) → ( ( 𝐴 ∨ℋ 𝑥 ) = 𝐵 ↔ ( 𝐴 ∨ℋ ( ( ⊥ ‘ 𝐴 ) ∩ 𝐵 ) ) = 𝐵 ) ) |
| 15 | 12 14 | anbi12d | ⊢ ( 𝑥 = ( ( ⊥ ‘ 𝐴 ) ∩ 𝐵 ) → ( ( 𝐴 ⊆ ( ⊥ ‘ 𝑥 ) ∧ ( 𝐴 ∨ℋ 𝑥 ) = 𝐵 ) ↔ ( 𝐴 ⊆ ( ⊥ ‘ ( ( ⊥ ‘ 𝐴 ) ∩ 𝐵 ) ) ∧ ( 𝐴 ∨ℋ ( ( ⊥ ‘ 𝐴 ) ∩ 𝐵 ) ) = 𝐵 ) ) ) |
| 16 | 15 | rspcev | ⊢ ( ( ( ( ⊥ ‘ 𝐴 ) ∩ 𝐵 ) ∈ Cℋ ∧ ( 𝐴 ⊆ ( ⊥ ‘ ( ( ⊥ ‘ 𝐴 ) ∩ 𝐵 ) ) ∧ ( 𝐴 ∨ℋ ( ( ⊥ ‘ 𝐴 ) ∩ 𝐵 ) ) = 𝐵 ) ) → ∃ 𝑥 ∈ Cℋ ( 𝐴 ⊆ ( ⊥ ‘ 𝑥 ) ∧ ( 𝐴 ∨ℋ 𝑥 ) = 𝐵 ) ) |
| 17 | 4 10 16 | sylancr | ⊢ ( 𝐴 ⊆ 𝐵 → ∃ 𝑥 ∈ Cℋ ( 𝐴 ⊆ ( ⊥ ‘ 𝑥 ) ∧ ( 𝐴 ∨ℋ 𝑥 ) = 𝐵 ) ) |