This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An equivalent of the orthomodular law. Theorem 29.13(e) of MaedaMaeda p. 132. (Contributed by NM, 30-May-2004) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pjoml2.1 | |- A e. CH |
|
| pjoml2.2 | |- B e. CH |
||
| Assertion | pjoml6i | |- ( A C_ B -> E. x e. CH ( A C_ ( _|_ ` x ) /\ ( A vH x ) = B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pjoml2.1 | |- A e. CH |
|
| 2 | pjoml2.2 | |- B e. CH |
|
| 3 | 1 | choccli | |- ( _|_ ` A ) e. CH |
| 4 | 3 2 | chincli | |- ( ( _|_ ` A ) i^i B ) e. CH |
| 5 | 1 2 | pjoml2i | |- ( A C_ B -> ( A vH ( ( _|_ ` A ) i^i B ) ) = B ) |
| 6 | 2 | choccli | |- ( _|_ ` B ) e. CH |
| 7 | 1 6 | chub1i | |- A C_ ( A vH ( _|_ ` B ) ) |
| 8 | 1 2 | chdmm2i | |- ( _|_ ` ( ( _|_ ` A ) i^i B ) ) = ( A vH ( _|_ ` B ) ) |
| 9 | 7 8 | sseqtrri | |- A C_ ( _|_ ` ( ( _|_ ` A ) i^i B ) ) |
| 10 | 5 9 | jctil | |- ( A C_ B -> ( A C_ ( _|_ ` ( ( _|_ ` A ) i^i B ) ) /\ ( A vH ( ( _|_ ` A ) i^i B ) ) = B ) ) |
| 11 | fveq2 | |- ( x = ( ( _|_ ` A ) i^i B ) -> ( _|_ ` x ) = ( _|_ ` ( ( _|_ ` A ) i^i B ) ) ) |
|
| 12 | 11 | sseq2d | |- ( x = ( ( _|_ ` A ) i^i B ) -> ( A C_ ( _|_ ` x ) <-> A C_ ( _|_ ` ( ( _|_ ` A ) i^i B ) ) ) ) |
| 13 | oveq2 | |- ( x = ( ( _|_ ` A ) i^i B ) -> ( A vH x ) = ( A vH ( ( _|_ ` A ) i^i B ) ) ) |
|
| 14 | 13 | eqeq1d | |- ( x = ( ( _|_ ` A ) i^i B ) -> ( ( A vH x ) = B <-> ( A vH ( ( _|_ ` A ) i^i B ) ) = B ) ) |
| 15 | 12 14 | anbi12d | |- ( x = ( ( _|_ ` A ) i^i B ) -> ( ( A C_ ( _|_ ` x ) /\ ( A vH x ) = B ) <-> ( A C_ ( _|_ ` ( ( _|_ ` A ) i^i B ) ) /\ ( A vH ( ( _|_ ` A ) i^i B ) ) = B ) ) ) |
| 16 | 15 | rspcev | |- ( ( ( ( _|_ ` A ) i^i B ) e. CH /\ ( A C_ ( _|_ ` ( ( _|_ ` A ) i^i B ) ) /\ ( A vH ( ( _|_ ` A ) i^i B ) ) = B ) ) -> E. x e. CH ( A C_ ( _|_ ` x ) /\ ( A vH x ) = B ) ) |
| 17 | 4 10 16 | sylancr | |- ( A C_ B -> E. x e. CH ( A C_ ( _|_ ` x ) /\ ( A vH x ) = B ) ) |