This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Variation of orthomodular law. (Contributed by NM, 24-Jun-2004) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pjoml2.1 | |- A e. CH |
|
| pjoml2.2 | |- B e. CH |
||
| Assertion | pjoml3i | |- ( B C_ A -> ( A i^i ( ( _|_ ` A ) vH B ) ) = B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pjoml2.1 | |- A e. CH |
|
| 2 | pjoml2.2 | |- B e. CH |
|
| 3 | 1 | choccli | |- ( _|_ ` A ) e. CH |
| 4 | 2 | choccli | |- ( _|_ ` B ) e. CH |
| 5 | 3 4 | pjoml2i | |- ( ( _|_ ` A ) C_ ( _|_ ` B ) -> ( ( _|_ ` A ) vH ( ( _|_ ` ( _|_ ` A ) ) i^i ( _|_ ` B ) ) ) = ( _|_ ` B ) ) |
| 6 | 2 1 | chsscon3i | |- ( B C_ A <-> ( _|_ ` A ) C_ ( _|_ ` B ) ) |
| 7 | eqcom | |- ( ( _|_ ` ( ( _|_ ` A ) vH ( ( _|_ ` ( _|_ ` A ) ) i^i ( _|_ ` B ) ) ) ) = B <-> B = ( _|_ ` ( ( _|_ ` A ) vH ( ( _|_ ` ( _|_ ` A ) ) i^i ( _|_ ` B ) ) ) ) ) |
|
| 8 | 3 | choccli | |- ( _|_ ` ( _|_ ` A ) ) e. CH |
| 9 | 8 4 | chincli | |- ( ( _|_ ` ( _|_ ` A ) ) i^i ( _|_ ` B ) ) e. CH |
| 10 | 1 9 | chdmj2i | |- ( _|_ ` ( ( _|_ ` A ) vH ( ( _|_ ` ( _|_ ` A ) ) i^i ( _|_ ` B ) ) ) ) = ( A i^i ( _|_ ` ( ( _|_ ` ( _|_ ` A ) ) i^i ( _|_ ` B ) ) ) ) |
| 11 | 3 2 | chdmm4i | |- ( _|_ ` ( ( _|_ ` ( _|_ ` A ) ) i^i ( _|_ ` B ) ) ) = ( ( _|_ ` A ) vH B ) |
| 12 | 11 | ineq2i | |- ( A i^i ( _|_ ` ( ( _|_ ` ( _|_ ` A ) ) i^i ( _|_ ` B ) ) ) ) = ( A i^i ( ( _|_ ` A ) vH B ) ) |
| 13 | 10 12 | eqtri | |- ( _|_ ` ( ( _|_ ` A ) vH ( ( _|_ ` ( _|_ ` A ) ) i^i ( _|_ ` B ) ) ) ) = ( A i^i ( ( _|_ ` A ) vH B ) ) |
| 14 | 13 | eqeq1i | |- ( ( _|_ ` ( ( _|_ ` A ) vH ( ( _|_ ` ( _|_ ` A ) ) i^i ( _|_ ` B ) ) ) ) = B <-> ( A i^i ( ( _|_ ` A ) vH B ) ) = B ) |
| 15 | 3 9 | chjcli | |- ( ( _|_ ` A ) vH ( ( _|_ ` ( _|_ ` A ) ) i^i ( _|_ ` B ) ) ) e. CH |
| 16 | 2 15 | chcon2i | |- ( B = ( _|_ ` ( ( _|_ ` A ) vH ( ( _|_ ` ( _|_ ` A ) ) i^i ( _|_ ` B ) ) ) ) <-> ( ( _|_ ` A ) vH ( ( _|_ ` ( _|_ ` A ) ) i^i ( _|_ ` B ) ) ) = ( _|_ ` B ) ) |
| 17 | 7 14 16 | 3bitr3i | |- ( ( A i^i ( ( _|_ ` A ) vH B ) ) = B <-> ( ( _|_ ` A ) vH ( ( _|_ ` ( _|_ ` A ) ) i^i ( _|_ ` B ) ) ) = ( _|_ ` B ) ) |
| 18 | 5 6 17 | 3imtr4i | |- ( B C_ A -> ( A i^i ( ( _|_ ` A ) vH B ) ) = B ) |