This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Membership of projection in orthocomplement of intersection. (Contributed by NM, 21-Apr-2001) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pjocin.1 | ⊢ 𝐺 ∈ Cℋ | |
| pjocin.2 | ⊢ 𝐻 ∈ Cℋ | ||
| Assertion | pjocini | ⊢ ( 𝐴 ∈ ( ⊥ ‘ ( 𝐺 ∩ 𝐻 ) ) → ( ( projℎ ‘ 𝐺 ) ‘ 𝐴 ) ∈ ( ⊥ ‘ ( 𝐺 ∩ 𝐻 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pjocin.1 | ⊢ 𝐺 ∈ Cℋ | |
| 2 | pjocin.2 | ⊢ 𝐻 ∈ Cℋ | |
| 3 | 1 2 | chincli | ⊢ ( 𝐺 ∩ 𝐻 ) ∈ Cℋ |
| 4 | 3 | choccli | ⊢ ( ⊥ ‘ ( 𝐺 ∩ 𝐻 ) ) ∈ Cℋ |
| 5 | 4 | cheli | ⊢ ( 𝐴 ∈ ( ⊥ ‘ ( 𝐺 ∩ 𝐻 ) ) → 𝐴 ∈ ℋ ) |
| 6 | pjpo | ⊢ ( ( 𝐺 ∈ Cℋ ∧ 𝐴 ∈ ℋ ) → ( ( projℎ ‘ 𝐺 ) ‘ 𝐴 ) = ( 𝐴 −ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐺 ) ) ‘ 𝐴 ) ) ) | |
| 7 | 1 5 6 | sylancr | ⊢ ( 𝐴 ∈ ( ⊥ ‘ ( 𝐺 ∩ 𝐻 ) ) → ( ( projℎ ‘ 𝐺 ) ‘ 𝐴 ) = ( 𝐴 −ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐺 ) ) ‘ 𝐴 ) ) ) |
| 8 | inss1 | ⊢ ( 𝐺 ∩ 𝐻 ) ⊆ 𝐺 | |
| 9 | 3 1 | chsscon3i | ⊢ ( ( 𝐺 ∩ 𝐻 ) ⊆ 𝐺 ↔ ( ⊥ ‘ 𝐺 ) ⊆ ( ⊥ ‘ ( 𝐺 ∩ 𝐻 ) ) ) |
| 10 | 8 9 | mpbi | ⊢ ( ⊥ ‘ 𝐺 ) ⊆ ( ⊥ ‘ ( 𝐺 ∩ 𝐻 ) ) |
| 11 | 1 | choccli | ⊢ ( ⊥ ‘ 𝐺 ) ∈ Cℋ |
| 12 | 11 | pjcli | ⊢ ( 𝐴 ∈ ℋ → ( ( projℎ ‘ ( ⊥ ‘ 𝐺 ) ) ‘ 𝐴 ) ∈ ( ⊥ ‘ 𝐺 ) ) |
| 13 | 5 12 | syl | ⊢ ( 𝐴 ∈ ( ⊥ ‘ ( 𝐺 ∩ 𝐻 ) ) → ( ( projℎ ‘ ( ⊥ ‘ 𝐺 ) ) ‘ 𝐴 ) ∈ ( ⊥ ‘ 𝐺 ) ) |
| 14 | 10 13 | sselid | ⊢ ( 𝐴 ∈ ( ⊥ ‘ ( 𝐺 ∩ 𝐻 ) ) → ( ( projℎ ‘ ( ⊥ ‘ 𝐺 ) ) ‘ 𝐴 ) ∈ ( ⊥ ‘ ( 𝐺 ∩ 𝐻 ) ) ) |
| 15 | 4 | chshii | ⊢ ( ⊥ ‘ ( 𝐺 ∩ 𝐻 ) ) ∈ Sℋ |
| 16 | shsubcl | ⊢ ( ( ( ⊥ ‘ ( 𝐺 ∩ 𝐻 ) ) ∈ Sℋ ∧ 𝐴 ∈ ( ⊥ ‘ ( 𝐺 ∩ 𝐻 ) ) ∧ ( ( projℎ ‘ ( ⊥ ‘ 𝐺 ) ) ‘ 𝐴 ) ∈ ( ⊥ ‘ ( 𝐺 ∩ 𝐻 ) ) ) → ( 𝐴 −ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐺 ) ) ‘ 𝐴 ) ) ∈ ( ⊥ ‘ ( 𝐺 ∩ 𝐻 ) ) ) | |
| 17 | 15 16 | mp3an1 | ⊢ ( ( 𝐴 ∈ ( ⊥ ‘ ( 𝐺 ∩ 𝐻 ) ) ∧ ( ( projℎ ‘ ( ⊥ ‘ 𝐺 ) ) ‘ 𝐴 ) ∈ ( ⊥ ‘ ( 𝐺 ∩ 𝐻 ) ) ) → ( 𝐴 −ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐺 ) ) ‘ 𝐴 ) ) ∈ ( ⊥ ‘ ( 𝐺 ∩ 𝐻 ) ) ) |
| 18 | 14 17 | mpdan | ⊢ ( 𝐴 ∈ ( ⊥ ‘ ( 𝐺 ∩ 𝐻 ) ) → ( 𝐴 −ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐺 ) ) ‘ 𝐴 ) ) ∈ ( ⊥ ‘ ( 𝐺 ∩ 𝐻 ) ) ) |
| 19 | 7 18 | eqeltrd | ⊢ ( 𝐴 ∈ ( ⊥ ‘ ( 𝐺 ∩ 𝐻 ) ) → ( ( projℎ ‘ 𝐺 ) ‘ 𝐴 ) ∈ ( ⊥ ‘ ( 𝐺 ∩ 𝐻 ) ) ) |