This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Membership of projection in orthocomplement of intersection. (Contributed by NM, 21-Apr-2001) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pjocin.1 | |- G e. CH |
|
| pjocin.2 | |- H e. CH |
||
| Assertion | pjocini | |- ( A e. ( _|_ ` ( G i^i H ) ) -> ( ( projh ` G ) ` A ) e. ( _|_ ` ( G i^i H ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pjocin.1 | |- G e. CH |
|
| 2 | pjocin.2 | |- H e. CH |
|
| 3 | 1 2 | chincli | |- ( G i^i H ) e. CH |
| 4 | 3 | choccli | |- ( _|_ ` ( G i^i H ) ) e. CH |
| 5 | 4 | cheli | |- ( A e. ( _|_ ` ( G i^i H ) ) -> A e. ~H ) |
| 6 | pjpo | |- ( ( G e. CH /\ A e. ~H ) -> ( ( projh ` G ) ` A ) = ( A -h ( ( projh ` ( _|_ ` G ) ) ` A ) ) ) |
|
| 7 | 1 5 6 | sylancr | |- ( A e. ( _|_ ` ( G i^i H ) ) -> ( ( projh ` G ) ` A ) = ( A -h ( ( projh ` ( _|_ ` G ) ) ` A ) ) ) |
| 8 | inss1 | |- ( G i^i H ) C_ G |
|
| 9 | 3 1 | chsscon3i | |- ( ( G i^i H ) C_ G <-> ( _|_ ` G ) C_ ( _|_ ` ( G i^i H ) ) ) |
| 10 | 8 9 | mpbi | |- ( _|_ ` G ) C_ ( _|_ ` ( G i^i H ) ) |
| 11 | 1 | choccli | |- ( _|_ ` G ) e. CH |
| 12 | 11 | pjcli | |- ( A e. ~H -> ( ( projh ` ( _|_ ` G ) ) ` A ) e. ( _|_ ` G ) ) |
| 13 | 5 12 | syl | |- ( A e. ( _|_ ` ( G i^i H ) ) -> ( ( projh ` ( _|_ ` G ) ) ` A ) e. ( _|_ ` G ) ) |
| 14 | 10 13 | sselid | |- ( A e. ( _|_ ` ( G i^i H ) ) -> ( ( projh ` ( _|_ ` G ) ) ` A ) e. ( _|_ ` ( G i^i H ) ) ) |
| 15 | 4 | chshii | |- ( _|_ ` ( G i^i H ) ) e. SH |
| 16 | shsubcl | |- ( ( ( _|_ ` ( G i^i H ) ) e. SH /\ A e. ( _|_ ` ( G i^i H ) ) /\ ( ( projh ` ( _|_ ` G ) ) ` A ) e. ( _|_ ` ( G i^i H ) ) ) -> ( A -h ( ( projh ` ( _|_ ` G ) ) ` A ) ) e. ( _|_ ` ( G i^i H ) ) ) |
|
| 17 | 15 16 | mp3an1 | |- ( ( A e. ( _|_ ` ( G i^i H ) ) /\ ( ( projh ` ( _|_ ` G ) ) ` A ) e. ( _|_ ` ( G i^i H ) ) ) -> ( A -h ( ( projh ` ( _|_ ` G ) ) ` A ) ) e. ( _|_ ` ( G i^i H ) ) ) |
| 18 | 14 17 | mpdan | |- ( A e. ( _|_ ` ( G i^i H ) ) -> ( A -h ( ( projh ` ( _|_ ` G ) ) ` A ) ) e. ( _|_ ` ( G i^i H ) ) ) |
| 19 | 7 18 | eqeltrd | |- ( A e. ( _|_ ` ( G i^i H ) ) -> ( ( projh ` G ) ` A ) e. ( _|_ ` ( G i^i H ) ) ) |