This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A sufficient condition for subspace join to be equal to subspace sum. (Contributed by NM, 29-May-2004) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pjjs.1 | ⊢ 𝐺 ∈ Cℋ | |
| pjjs.2 | ⊢ 𝐻 ∈ Sℋ | ||
| Assertion | pjjsi | ⊢ ( ∀ 𝑥 ∈ ( 𝐺 ∨ℋ 𝐻 ) ( ( projℎ ‘ ( ⊥ ‘ 𝐺 ) ) ‘ 𝑥 ) ∈ 𝐻 → ( 𝐺 ∨ℋ 𝐻 ) = ( 𝐺 +ℋ 𝐻 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pjjs.1 | ⊢ 𝐺 ∈ Cℋ | |
| 2 | pjjs.2 | ⊢ 𝐻 ∈ Sℋ | |
| 3 | fveq2 | ⊢ ( 𝑥 = 𝑤 → ( ( projℎ ‘ ( ⊥ ‘ 𝐺 ) ) ‘ 𝑥 ) = ( ( projℎ ‘ ( ⊥ ‘ 𝐺 ) ) ‘ 𝑤 ) ) | |
| 4 | 3 | eleq1d | ⊢ ( 𝑥 = 𝑤 → ( ( ( projℎ ‘ ( ⊥ ‘ 𝐺 ) ) ‘ 𝑥 ) ∈ 𝐻 ↔ ( ( projℎ ‘ ( ⊥ ‘ 𝐺 ) ) ‘ 𝑤 ) ∈ 𝐻 ) ) |
| 5 | 4 | rspcv | ⊢ ( 𝑤 ∈ ( 𝐺 ∨ℋ 𝐻 ) → ( ∀ 𝑥 ∈ ( 𝐺 ∨ℋ 𝐻 ) ( ( projℎ ‘ ( ⊥ ‘ 𝐺 ) ) ‘ 𝑥 ) ∈ 𝐻 → ( ( projℎ ‘ ( ⊥ ‘ 𝐺 ) ) ‘ 𝑤 ) ∈ 𝐻 ) ) |
| 6 | 1 | chshii | ⊢ 𝐺 ∈ Sℋ |
| 7 | 6 2 | shjcli | ⊢ ( 𝐺 ∨ℋ 𝐻 ) ∈ Cℋ |
| 8 | 7 | cheli | ⊢ ( 𝑤 ∈ ( 𝐺 ∨ℋ 𝐻 ) → 𝑤 ∈ ℋ ) |
| 9 | 1 | pjcli | ⊢ ( 𝑤 ∈ ℋ → ( ( projℎ ‘ 𝐺 ) ‘ 𝑤 ) ∈ 𝐺 ) |
| 10 | 9 | anim1i | ⊢ ( ( 𝑤 ∈ ℋ ∧ ( ( projℎ ‘ ( ⊥ ‘ 𝐺 ) ) ‘ 𝑤 ) ∈ 𝐻 ) → ( ( ( projℎ ‘ 𝐺 ) ‘ 𝑤 ) ∈ 𝐺 ∧ ( ( projℎ ‘ ( ⊥ ‘ 𝐺 ) ) ‘ 𝑤 ) ∈ 𝐻 ) ) |
| 11 | axpjpj | ⊢ ( ( 𝐺 ∈ Cℋ ∧ 𝑤 ∈ ℋ ) → 𝑤 = ( ( ( projℎ ‘ 𝐺 ) ‘ 𝑤 ) +ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐺 ) ) ‘ 𝑤 ) ) ) | |
| 12 | 1 11 | mpan | ⊢ ( 𝑤 ∈ ℋ → 𝑤 = ( ( ( projℎ ‘ 𝐺 ) ‘ 𝑤 ) +ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐺 ) ) ‘ 𝑤 ) ) ) |
| 13 | 12 | adantr | ⊢ ( ( 𝑤 ∈ ℋ ∧ ( ( projℎ ‘ ( ⊥ ‘ 𝐺 ) ) ‘ 𝑤 ) ∈ 𝐻 ) → 𝑤 = ( ( ( projℎ ‘ 𝐺 ) ‘ 𝑤 ) +ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐺 ) ) ‘ 𝑤 ) ) ) |
| 14 | 10 13 | jca | ⊢ ( ( 𝑤 ∈ ℋ ∧ ( ( projℎ ‘ ( ⊥ ‘ 𝐺 ) ) ‘ 𝑤 ) ∈ 𝐻 ) → ( ( ( ( projℎ ‘ 𝐺 ) ‘ 𝑤 ) ∈ 𝐺 ∧ ( ( projℎ ‘ ( ⊥ ‘ 𝐺 ) ) ‘ 𝑤 ) ∈ 𝐻 ) ∧ 𝑤 = ( ( ( projℎ ‘ 𝐺 ) ‘ 𝑤 ) +ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐺 ) ) ‘ 𝑤 ) ) ) ) |
| 15 | 8 14 | sylan | ⊢ ( ( 𝑤 ∈ ( 𝐺 ∨ℋ 𝐻 ) ∧ ( ( projℎ ‘ ( ⊥ ‘ 𝐺 ) ) ‘ 𝑤 ) ∈ 𝐻 ) → ( ( ( ( projℎ ‘ 𝐺 ) ‘ 𝑤 ) ∈ 𝐺 ∧ ( ( projℎ ‘ ( ⊥ ‘ 𝐺 ) ) ‘ 𝑤 ) ∈ 𝐻 ) ∧ 𝑤 = ( ( ( projℎ ‘ 𝐺 ) ‘ 𝑤 ) +ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐺 ) ) ‘ 𝑤 ) ) ) ) |
| 16 | rspceov | ⊢ ( ( ( ( projℎ ‘ 𝐺 ) ‘ 𝑤 ) ∈ 𝐺 ∧ ( ( projℎ ‘ ( ⊥ ‘ 𝐺 ) ) ‘ 𝑤 ) ∈ 𝐻 ∧ 𝑤 = ( ( ( projℎ ‘ 𝐺 ) ‘ 𝑤 ) +ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐺 ) ) ‘ 𝑤 ) ) ) → ∃ 𝑦 ∈ 𝐺 ∃ 𝑧 ∈ 𝐻 𝑤 = ( 𝑦 +ℎ 𝑧 ) ) | |
| 17 | 16 | 3expa | ⊢ ( ( ( ( ( projℎ ‘ 𝐺 ) ‘ 𝑤 ) ∈ 𝐺 ∧ ( ( projℎ ‘ ( ⊥ ‘ 𝐺 ) ) ‘ 𝑤 ) ∈ 𝐻 ) ∧ 𝑤 = ( ( ( projℎ ‘ 𝐺 ) ‘ 𝑤 ) +ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐺 ) ) ‘ 𝑤 ) ) ) → ∃ 𝑦 ∈ 𝐺 ∃ 𝑧 ∈ 𝐻 𝑤 = ( 𝑦 +ℎ 𝑧 ) ) |
| 18 | 15 17 | syl | ⊢ ( ( 𝑤 ∈ ( 𝐺 ∨ℋ 𝐻 ) ∧ ( ( projℎ ‘ ( ⊥ ‘ 𝐺 ) ) ‘ 𝑤 ) ∈ 𝐻 ) → ∃ 𝑦 ∈ 𝐺 ∃ 𝑧 ∈ 𝐻 𝑤 = ( 𝑦 +ℎ 𝑧 ) ) |
| 19 | 6 2 | shseli | ⊢ ( 𝑤 ∈ ( 𝐺 +ℋ 𝐻 ) ↔ ∃ 𝑦 ∈ 𝐺 ∃ 𝑧 ∈ 𝐻 𝑤 = ( 𝑦 +ℎ 𝑧 ) ) |
| 20 | 18 19 | sylibr | ⊢ ( ( 𝑤 ∈ ( 𝐺 ∨ℋ 𝐻 ) ∧ ( ( projℎ ‘ ( ⊥ ‘ 𝐺 ) ) ‘ 𝑤 ) ∈ 𝐻 ) → 𝑤 ∈ ( 𝐺 +ℋ 𝐻 ) ) |
| 21 | 20 | ex | ⊢ ( 𝑤 ∈ ( 𝐺 ∨ℋ 𝐻 ) → ( ( ( projℎ ‘ ( ⊥ ‘ 𝐺 ) ) ‘ 𝑤 ) ∈ 𝐻 → 𝑤 ∈ ( 𝐺 +ℋ 𝐻 ) ) ) |
| 22 | 5 21 | syldc | ⊢ ( ∀ 𝑥 ∈ ( 𝐺 ∨ℋ 𝐻 ) ( ( projℎ ‘ ( ⊥ ‘ 𝐺 ) ) ‘ 𝑥 ) ∈ 𝐻 → ( 𝑤 ∈ ( 𝐺 ∨ℋ 𝐻 ) → 𝑤 ∈ ( 𝐺 +ℋ 𝐻 ) ) ) |
| 23 | 22 | ssrdv | ⊢ ( ∀ 𝑥 ∈ ( 𝐺 ∨ℋ 𝐻 ) ( ( projℎ ‘ ( ⊥ ‘ 𝐺 ) ) ‘ 𝑥 ) ∈ 𝐻 → ( 𝐺 ∨ℋ 𝐻 ) ⊆ ( 𝐺 +ℋ 𝐻 ) ) |
| 24 | 6 2 | shsleji | ⊢ ( 𝐺 +ℋ 𝐻 ) ⊆ ( 𝐺 ∨ℋ 𝐻 ) |
| 25 | 23 24 | jctir | ⊢ ( ∀ 𝑥 ∈ ( 𝐺 ∨ℋ 𝐻 ) ( ( projℎ ‘ ( ⊥ ‘ 𝐺 ) ) ‘ 𝑥 ) ∈ 𝐻 → ( ( 𝐺 ∨ℋ 𝐻 ) ⊆ ( 𝐺 +ℋ 𝐻 ) ∧ ( 𝐺 +ℋ 𝐻 ) ⊆ ( 𝐺 ∨ℋ 𝐻 ) ) ) |
| 26 | eqss | ⊢ ( ( 𝐺 ∨ℋ 𝐻 ) = ( 𝐺 +ℋ 𝐻 ) ↔ ( ( 𝐺 ∨ℋ 𝐻 ) ⊆ ( 𝐺 +ℋ 𝐻 ) ∧ ( 𝐺 +ℋ 𝐻 ) ⊆ ( 𝐺 ∨ℋ 𝐻 ) ) ) | |
| 27 | 25 26 | sylibr | ⊢ ( ∀ 𝑥 ∈ ( 𝐺 ∨ℋ 𝐻 ) ( ( projℎ ‘ ( ⊥ ‘ 𝐺 ) ) ‘ 𝑥 ) ∈ 𝐻 → ( 𝐺 ∨ℋ 𝐻 ) = ( 𝐺 +ℋ 𝐻 ) ) |