This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A sufficient condition for subspace join to be equal to subspace sum. (Contributed by NM, 29-May-2004) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pjjs.1 | |- G e. CH |
|
| pjjs.2 | |- H e. SH |
||
| Assertion | pjjsi | |- ( A. x e. ( G vH H ) ( ( projh ` ( _|_ ` G ) ) ` x ) e. H -> ( G vH H ) = ( G +H H ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pjjs.1 | |- G e. CH |
|
| 2 | pjjs.2 | |- H e. SH |
|
| 3 | fveq2 | |- ( x = w -> ( ( projh ` ( _|_ ` G ) ) ` x ) = ( ( projh ` ( _|_ ` G ) ) ` w ) ) |
|
| 4 | 3 | eleq1d | |- ( x = w -> ( ( ( projh ` ( _|_ ` G ) ) ` x ) e. H <-> ( ( projh ` ( _|_ ` G ) ) ` w ) e. H ) ) |
| 5 | 4 | rspcv | |- ( w e. ( G vH H ) -> ( A. x e. ( G vH H ) ( ( projh ` ( _|_ ` G ) ) ` x ) e. H -> ( ( projh ` ( _|_ ` G ) ) ` w ) e. H ) ) |
| 6 | 1 | chshii | |- G e. SH |
| 7 | 6 2 | shjcli | |- ( G vH H ) e. CH |
| 8 | 7 | cheli | |- ( w e. ( G vH H ) -> w e. ~H ) |
| 9 | 1 | pjcli | |- ( w e. ~H -> ( ( projh ` G ) ` w ) e. G ) |
| 10 | 9 | anim1i | |- ( ( w e. ~H /\ ( ( projh ` ( _|_ ` G ) ) ` w ) e. H ) -> ( ( ( projh ` G ) ` w ) e. G /\ ( ( projh ` ( _|_ ` G ) ) ` w ) e. H ) ) |
| 11 | axpjpj | |- ( ( G e. CH /\ w e. ~H ) -> w = ( ( ( projh ` G ) ` w ) +h ( ( projh ` ( _|_ ` G ) ) ` w ) ) ) |
|
| 12 | 1 11 | mpan | |- ( w e. ~H -> w = ( ( ( projh ` G ) ` w ) +h ( ( projh ` ( _|_ ` G ) ) ` w ) ) ) |
| 13 | 12 | adantr | |- ( ( w e. ~H /\ ( ( projh ` ( _|_ ` G ) ) ` w ) e. H ) -> w = ( ( ( projh ` G ) ` w ) +h ( ( projh ` ( _|_ ` G ) ) ` w ) ) ) |
| 14 | 10 13 | jca | |- ( ( w e. ~H /\ ( ( projh ` ( _|_ ` G ) ) ` w ) e. H ) -> ( ( ( ( projh ` G ) ` w ) e. G /\ ( ( projh ` ( _|_ ` G ) ) ` w ) e. H ) /\ w = ( ( ( projh ` G ) ` w ) +h ( ( projh ` ( _|_ ` G ) ) ` w ) ) ) ) |
| 15 | 8 14 | sylan | |- ( ( w e. ( G vH H ) /\ ( ( projh ` ( _|_ ` G ) ) ` w ) e. H ) -> ( ( ( ( projh ` G ) ` w ) e. G /\ ( ( projh ` ( _|_ ` G ) ) ` w ) e. H ) /\ w = ( ( ( projh ` G ) ` w ) +h ( ( projh ` ( _|_ ` G ) ) ` w ) ) ) ) |
| 16 | rspceov | |- ( ( ( ( projh ` G ) ` w ) e. G /\ ( ( projh ` ( _|_ ` G ) ) ` w ) e. H /\ w = ( ( ( projh ` G ) ` w ) +h ( ( projh ` ( _|_ ` G ) ) ` w ) ) ) -> E. y e. G E. z e. H w = ( y +h z ) ) |
|
| 17 | 16 | 3expa | |- ( ( ( ( ( projh ` G ) ` w ) e. G /\ ( ( projh ` ( _|_ ` G ) ) ` w ) e. H ) /\ w = ( ( ( projh ` G ) ` w ) +h ( ( projh ` ( _|_ ` G ) ) ` w ) ) ) -> E. y e. G E. z e. H w = ( y +h z ) ) |
| 18 | 15 17 | syl | |- ( ( w e. ( G vH H ) /\ ( ( projh ` ( _|_ ` G ) ) ` w ) e. H ) -> E. y e. G E. z e. H w = ( y +h z ) ) |
| 19 | 6 2 | shseli | |- ( w e. ( G +H H ) <-> E. y e. G E. z e. H w = ( y +h z ) ) |
| 20 | 18 19 | sylibr | |- ( ( w e. ( G vH H ) /\ ( ( projh ` ( _|_ ` G ) ) ` w ) e. H ) -> w e. ( G +H H ) ) |
| 21 | 20 | ex | |- ( w e. ( G vH H ) -> ( ( ( projh ` ( _|_ ` G ) ) ` w ) e. H -> w e. ( G +H H ) ) ) |
| 22 | 5 21 | syldc | |- ( A. x e. ( G vH H ) ( ( projh ` ( _|_ ` G ) ) ` x ) e. H -> ( w e. ( G vH H ) -> w e. ( G +H H ) ) ) |
| 23 | 22 | ssrdv | |- ( A. x e. ( G vH H ) ( ( projh ` ( _|_ ` G ) ) ` x ) e. H -> ( G vH H ) C_ ( G +H H ) ) |
| 24 | 6 2 | shsleji | |- ( G +H H ) C_ ( G vH H ) |
| 25 | 23 24 | jctir | |- ( A. x e. ( G vH H ) ( ( projh ` ( _|_ ` G ) ) ` x ) e. H -> ( ( G vH H ) C_ ( G +H H ) /\ ( G +H H ) C_ ( G vH H ) ) ) |
| 26 | eqss | |- ( ( G vH H ) = ( G +H H ) <-> ( ( G vH H ) C_ ( G +H H ) /\ ( G +H H ) C_ ( G vH H ) ) ) |
|
| 27 | 25 26 | sylibr | |- ( A. x e. ( G vH H ) ( ( projh ` ( _|_ ` G ) ) ` x ) e. H -> ( G vH H ) = ( G +H H ) ) |