This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Vector decomposition into sum of projections on orthogonal subspaces. (Contributed by NM, 21-Jun-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pjsumt.1 | ⊢ 𝐺 ∈ Cℋ | |
| pjsumt.2 | ⊢ 𝐻 ∈ Cℋ | ||
| Assertion | pjdsi | ⊢ ( ( 𝐴 ∈ ( 𝐺 ∨ℋ 𝐻 ) ∧ 𝐺 ⊆ ( ⊥ ‘ 𝐻 ) ) → 𝐴 = ( ( ( projℎ ‘ 𝐺 ) ‘ 𝐴 ) +ℎ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pjsumt.1 | ⊢ 𝐺 ∈ Cℋ | |
| 2 | pjsumt.2 | ⊢ 𝐻 ∈ Cℋ | |
| 3 | 1 2 | osumi | ⊢ ( 𝐺 ⊆ ( ⊥ ‘ 𝐻 ) → ( 𝐺 +ℋ 𝐻 ) = ( 𝐺 ∨ℋ 𝐻 ) ) |
| 4 | 3 | fveq2d | ⊢ ( 𝐺 ⊆ ( ⊥ ‘ 𝐻 ) → ( projℎ ‘ ( 𝐺 +ℋ 𝐻 ) ) = ( projℎ ‘ ( 𝐺 ∨ℋ 𝐻 ) ) ) |
| 5 | 4 | fveq1d | ⊢ ( 𝐺 ⊆ ( ⊥ ‘ 𝐻 ) → ( ( projℎ ‘ ( 𝐺 +ℋ 𝐻 ) ) ‘ 𝐴 ) = ( ( projℎ ‘ ( 𝐺 ∨ℋ 𝐻 ) ) ‘ 𝐴 ) ) |
| 6 | 1 2 | chjcli | ⊢ ( 𝐺 ∨ℋ 𝐻 ) ∈ Cℋ |
| 7 | pjid | ⊢ ( ( ( 𝐺 ∨ℋ 𝐻 ) ∈ Cℋ ∧ 𝐴 ∈ ( 𝐺 ∨ℋ 𝐻 ) ) → ( ( projℎ ‘ ( 𝐺 ∨ℋ 𝐻 ) ) ‘ 𝐴 ) = 𝐴 ) | |
| 8 | 6 7 | mpan | ⊢ ( 𝐴 ∈ ( 𝐺 ∨ℋ 𝐻 ) → ( ( projℎ ‘ ( 𝐺 ∨ℋ 𝐻 ) ) ‘ 𝐴 ) = 𝐴 ) |
| 9 | 5 8 | sylan9eqr | ⊢ ( ( 𝐴 ∈ ( 𝐺 ∨ℋ 𝐻 ) ∧ 𝐺 ⊆ ( ⊥ ‘ 𝐻 ) ) → ( ( projℎ ‘ ( 𝐺 +ℋ 𝐻 ) ) ‘ 𝐴 ) = 𝐴 ) |
| 10 | 6 | cheli | ⊢ ( 𝐴 ∈ ( 𝐺 ∨ℋ 𝐻 ) → 𝐴 ∈ ℋ ) |
| 11 | 1 2 | pjsumi | ⊢ ( 𝐴 ∈ ℋ → ( 𝐺 ⊆ ( ⊥ ‘ 𝐻 ) → ( ( projℎ ‘ ( 𝐺 +ℋ 𝐻 ) ) ‘ 𝐴 ) = ( ( ( projℎ ‘ 𝐺 ) ‘ 𝐴 ) +ℎ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) ) ) |
| 12 | 11 | imp | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐺 ⊆ ( ⊥ ‘ 𝐻 ) ) → ( ( projℎ ‘ ( 𝐺 +ℋ 𝐻 ) ) ‘ 𝐴 ) = ( ( ( projℎ ‘ 𝐺 ) ‘ 𝐴 ) +ℎ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) ) |
| 13 | 10 12 | sylan | ⊢ ( ( 𝐴 ∈ ( 𝐺 ∨ℋ 𝐻 ) ∧ 𝐺 ⊆ ( ⊥ ‘ 𝐻 ) ) → ( ( projℎ ‘ ( 𝐺 +ℋ 𝐻 ) ) ‘ 𝐴 ) = ( ( ( projℎ ‘ 𝐺 ) ‘ 𝐴 ) +ℎ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) ) |
| 14 | 9 13 | eqtr3d | ⊢ ( ( 𝐴 ∈ ( 𝐺 ∨ℋ 𝐻 ) ∧ 𝐺 ⊆ ( ⊥ ‘ 𝐻 ) ) → 𝐴 = ( ( ( projℎ ‘ 𝐺 ) ‘ 𝐴 ) +ℎ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) ) |