This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The projection on a subspace sum is the sum of the projections. (Contributed by NM, 11-Nov-2000) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pjsumt.1 | ⊢ 𝐺 ∈ Cℋ | |
| pjsumt.2 | ⊢ 𝐻 ∈ Cℋ | ||
| Assertion | pjsumi | ⊢ ( 𝐴 ∈ ℋ → ( 𝐺 ⊆ ( ⊥ ‘ 𝐻 ) → ( ( projℎ ‘ ( 𝐺 +ℋ 𝐻 ) ) ‘ 𝐴 ) = ( ( ( projℎ ‘ 𝐺 ) ‘ 𝐴 ) +ℎ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pjsumt.1 | ⊢ 𝐺 ∈ Cℋ | |
| 2 | pjsumt.2 | ⊢ 𝐻 ∈ Cℋ | |
| 3 | 1 2 | osumi | ⊢ ( 𝐺 ⊆ ( ⊥ ‘ 𝐻 ) → ( 𝐺 +ℋ 𝐻 ) = ( 𝐺 ∨ℋ 𝐻 ) ) |
| 4 | 3 | fveq2d | ⊢ ( 𝐺 ⊆ ( ⊥ ‘ 𝐻 ) → ( projℎ ‘ ( 𝐺 +ℋ 𝐻 ) ) = ( projℎ ‘ ( 𝐺 ∨ℋ 𝐻 ) ) ) |
| 5 | 4 | fveq1d | ⊢ ( 𝐺 ⊆ ( ⊥ ‘ 𝐻 ) → ( ( projℎ ‘ ( 𝐺 +ℋ 𝐻 ) ) ‘ 𝐴 ) = ( ( projℎ ‘ ( 𝐺 ∨ℋ 𝐻 ) ) ‘ 𝐴 ) ) |
| 6 | 5 | adantl | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐺 ⊆ ( ⊥ ‘ 𝐻 ) ) → ( ( projℎ ‘ ( 𝐺 +ℋ 𝐻 ) ) ‘ 𝐴 ) = ( ( projℎ ‘ ( 𝐺 ∨ℋ 𝐻 ) ) ‘ 𝐴 ) ) |
| 7 | pjcjt2 | ⊢ ( ( 𝐺 ∈ Cℋ ∧ 𝐻 ∈ Cℋ ∧ 𝐴 ∈ ℋ ) → ( 𝐺 ⊆ ( ⊥ ‘ 𝐻 ) → ( ( projℎ ‘ ( 𝐺 ∨ℋ 𝐻 ) ) ‘ 𝐴 ) = ( ( ( projℎ ‘ 𝐺 ) ‘ 𝐴 ) +ℎ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) ) ) | |
| 8 | 1 2 7 | mp3an12 | ⊢ ( 𝐴 ∈ ℋ → ( 𝐺 ⊆ ( ⊥ ‘ 𝐻 ) → ( ( projℎ ‘ ( 𝐺 ∨ℋ 𝐻 ) ) ‘ 𝐴 ) = ( ( ( projℎ ‘ 𝐺 ) ‘ 𝐴 ) +ℎ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) ) ) |
| 9 | 8 | imp | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐺 ⊆ ( ⊥ ‘ 𝐻 ) ) → ( ( projℎ ‘ ( 𝐺 ∨ℋ 𝐻 ) ) ‘ 𝐴 ) = ( ( ( projℎ ‘ 𝐺 ) ‘ 𝐴 ) +ℎ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) ) |
| 10 | 6 9 | eqtrd | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐺 ⊆ ( ⊥ ‘ 𝐻 ) ) → ( ( projℎ ‘ ( 𝐺 +ℋ 𝐻 ) ) ‘ 𝐴 ) = ( ( ( projℎ ‘ 𝐺 ) ‘ 𝐴 ) +ℎ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) ) |
| 11 | 10 | ex | ⊢ ( 𝐴 ∈ ℋ → ( 𝐺 ⊆ ( ⊥ ‘ 𝐻 ) → ( ( projℎ ‘ ( 𝐺 +ℋ 𝐻 ) ) ‘ 𝐴 ) = ( ( ( projℎ ‘ 𝐺 ) ‘ 𝐴 ) +ℎ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) ) ) |