This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: One-to-one correspondence of projection and subspace. (Contributed by NM, 24-Apr-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pj11 | ⊢ ( ( 𝐺 ∈ Cℋ ∧ 𝐻 ∈ Cℋ ) → ( ( projℎ ‘ 𝐺 ) = ( projℎ ‘ 𝐻 ) ↔ 𝐺 = 𝐻 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveqeq2 | ⊢ ( 𝐺 = if ( 𝐺 ∈ Cℋ , 𝐺 , 0ℋ ) → ( ( projℎ ‘ 𝐺 ) = ( projℎ ‘ 𝐻 ) ↔ ( projℎ ‘ if ( 𝐺 ∈ Cℋ , 𝐺 , 0ℋ ) ) = ( projℎ ‘ 𝐻 ) ) ) | |
| 2 | eqeq1 | ⊢ ( 𝐺 = if ( 𝐺 ∈ Cℋ , 𝐺 , 0ℋ ) → ( 𝐺 = 𝐻 ↔ if ( 𝐺 ∈ Cℋ , 𝐺 , 0ℋ ) = 𝐻 ) ) | |
| 3 | 1 2 | bibi12d | ⊢ ( 𝐺 = if ( 𝐺 ∈ Cℋ , 𝐺 , 0ℋ ) → ( ( ( projℎ ‘ 𝐺 ) = ( projℎ ‘ 𝐻 ) ↔ 𝐺 = 𝐻 ) ↔ ( ( projℎ ‘ if ( 𝐺 ∈ Cℋ , 𝐺 , 0ℋ ) ) = ( projℎ ‘ 𝐻 ) ↔ if ( 𝐺 ∈ Cℋ , 𝐺 , 0ℋ ) = 𝐻 ) ) ) |
| 4 | fveq2 | ⊢ ( 𝐻 = if ( 𝐻 ∈ Cℋ , 𝐻 , 0ℋ ) → ( projℎ ‘ 𝐻 ) = ( projℎ ‘ if ( 𝐻 ∈ Cℋ , 𝐻 , 0ℋ ) ) ) | |
| 5 | 4 | eqeq2d | ⊢ ( 𝐻 = if ( 𝐻 ∈ Cℋ , 𝐻 , 0ℋ ) → ( ( projℎ ‘ if ( 𝐺 ∈ Cℋ , 𝐺 , 0ℋ ) ) = ( projℎ ‘ 𝐻 ) ↔ ( projℎ ‘ if ( 𝐺 ∈ Cℋ , 𝐺 , 0ℋ ) ) = ( projℎ ‘ if ( 𝐻 ∈ Cℋ , 𝐻 , 0ℋ ) ) ) ) |
| 6 | eqeq2 | ⊢ ( 𝐻 = if ( 𝐻 ∈ Cℋ , 𝐻 , 0ℋ ) → ( if ( 𝐺 ∈ Cℋ , 𝐺 , 0ℋ ) = 𝐻 ↔ if ( 𝐺 ∈ Cℋ , 𝐺 , 0ℋ ) = if ( 𝐻 ∈ Cℋ , 𝐻 , 0ℋ ) ) ) | |
| 7 | 5 6 | bibi12d | ⊢ ( 𝐻 = if ( 𝐻 ∈ Cℋ , 𝐻 , 0ℋ ) → ( ( ( projℎ ‘ if ( 𝐺 ∈ Cℋ , 𝐺 , 0ℋ ) ) = ( projℎ ‘ 𝐻 ) ↔ if ( 𝐺 ∈ Cℋ , 𝐺 , 0ℋ ) = 𝐻 ) ↔ ( ( projℎ ‘ if ( 𝐺 ∈ Cℋ , 𝐺 , 0ℋ ) ) = ( projℎ ‘ if ( 𝐻 ∈ Cℋ , 𝐻 , 0ℋ ) ) ↔ if ( 𝐺 ∈ Cℋ , 𝐺 , 0ℋ ) = if ( 𝐻 ∈ Cℋ , 𝐻 , 0ℋ ) ) ) ) |
| 8 | h0elch | ⊢ 0ℋ ∈ Cℋ | |
| 9 | 8 | elimel | ⊢ if ( 𝐺 ∈ Cℋ , 𝐺 , 0ℋ ) ∈ Cℋ |
| 10 | 8 | elimel | ⊢ if ( 𝐻 ∈ Cℋ , 𝐻 , 0ℋ ) ∈ Cℋ |
| 11 | 9 10 | pj11i | ⊢ ( ( projℎ ‘ if ( 𝐺 ∈ Cℋ , 𝐺 , 0ℋ ) ) = ( projℎ ‘ if ( 𝐻 ∈ Cℋ , 𝐻 , 0ℋ ) ) ↔ if ( 𝐺 ∈ Cℋ , 𝐺 , 0ℋ ) = if ( 𝐻 ∈ Cℋ , 𝐻 , 0ℋ ) ) |
| 12 | 3 7 11 | dedth2h | ⊢ ( ( 𝐺 ∈ Cℋ ∧ 𝐻 ∈ Cℋ ) → ( ( projℎ ‘ 𝐺 ) = ( projℎ ‘ 𝐻 ) ↔ 𝐺 = 𝐻 ) ) |