This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Theorem 4.5(v)<->(vi) of Beran p. 112. (Contributed by NM, 13-Aug-2000) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pjidm.1 | ⊢ 𝐻 ∈ Cℋ | |
| pjidm.2 | ⊢ 𝐴 ∈ ℋ | ||
| pjsslem.1 | ⊢ 𝐺 ∈ Cℋ | ||
| Assertion | pjdifnormii | ⊢ ( 0 ≤ ( ( ( ( projℎ ‘ 𝐺 ) ‘ 𝐴 ) −ℎ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) ·ih 𝐴 ) ↔ ( normℎ ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) ≤ ( normℎ ‘ ( ( projℎ ‘ 𝐺 ) ‘ 𝐴 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pjidm.1 | ⊢ 𝐻 ∈ Cℋ | |
| 2 | pjidm.2 | ⊢ 𝐴 ∈ ℋ | |
| 3 | pjsslem.1 | ⊢ 𝐺 ∈ Cℋ | |
| 4 | 3 2 | pjhclii | ⊢ ( ( projℎ ‘ 𝐺 ) ‘ 𝐴 ) ∈ ℋ |
| 5 | 4 | normcli | ⊢ ( normℎ ‘ ( ( projℎ ‘ 𝐺 ) ‘ 𝐴 ) ) ∈ ℝ |
| 6 | 5 | resqcli | ⊢ ( ( normℎ ‘ ( ( projℎ ‘ 𝐺 ) ‘ 𝐴 ) ) ↑ 2 ) ∈ ℝ |
| 7 | 1 2 | pjhclii | ⊢ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ∈ ℋ |
| 8 | 7 | normcli | ⊢ ( normℎ ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) ∈ ℝ |
| 9 | 8 | resqcli | ⊢ ( ( normℎ ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) ↑ 2 ) ∈ ℝ |
| 10 | 6 9 | subge0i | ⊢ ( 0 ≤ ( ( ( normℎ ‘ ( ( projℎ ‘ 𝐺 ) ‘ 𝐴 ) ) ↑ 2 ) − ( ( normℎ ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) ↑ 2 ) ) ↔ ( ( normℎ ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) ↑ 2 ) ≤ ( ( normℎ ‘ ( ( projℎ ‘ 𝐺 ) ‘ 𝐴 ) ) ↑ 2 ) ) |
| 11 | his2sub | ⊢ ( ( ( ( projℎ ‘ 𝐺 ) ‘ 𝐴 ) ∈ ℋ ∧ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ∈ ℋ ∧ 𝐴 ∈ ℋ ) → ( ( ( ( projℎ ‘ 𝐺 ) ‘ 𝐴 ) −ℎ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) ·ih 𝐴 ) = ( ( ( ( projℎ ‘ 𝐺 ) ‘ 𝐴 ) ·ih 𝐴 ) − ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ·ih 𝐴 ) ) ) | |
| 12 | 4 7 2 11 | mp3an | ⊢ ( ( ( ( projℎ ‘ 𝐺 ) ‘ 𝐴 ) −ℎ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) ·ih 𝐴 ) = ( ( ( ( projℎ ‘ 𝐺 ) ‘ 𝐴 ) ·ih 𝐴 ) − ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ·ih 𝐴 ) ) |
| 13 | 3 2 | pjinormii | ⊢ ( ( ( projℎ ‘ 𝐺 ) ‘ 𝐴 ) ·ih 𝐴 ) = ( ( normℎ ‘ ( ( projℎ ‘ 𝐺 ) ‘ 𝐴 ) ) ↑ 2 ) |
| 14 | 1 2 | pjinormii | ⊢ ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ·ih 𝐴 ) = ( ( normℎ ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) ↑ 2 ) |
| 15 | 13 14 | oveq12i | ⊢ ( ( ( ( projℎ ‘ 𝐺 ) ‘ 𝐴 ) ·ih 𝐴 ) − ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ·ih 𝐴 ) ) = ( ( ( normℎ ‘ ( ( projℎ ‘ 𝐺 ) ‘ 𝐴 ) ) ↑ 2 ) − ( ( normℎ ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) ↑ 2 ) ) |
| 16 | 12 15 | eqtri | ⊢ ( ( ( ( projℎ ‘ 𝐺 ) ‘ 𝐴 ) −ℎ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) ·ih 𝐴 ) = ( ( ( normℎ ‘ ( ( projℎ ‘ 𝐺 ) ‘ 𝐴 ) ) ↑ 2 ) − ( ( normℎ ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) ↑ 2 ) ) |
| 17 | 16 | breq2i | ⊢ ( 0 ≤ ( ( ( ( projℎ ‘ 𝐺 ) ‘ 𝐴 ) −ℎ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) ·ih 𝐴 ) ↔ 0 ≤ ( ( ( normℎ ‘ ( ( projℎ ‘ 𝐺 ) ‘ 𝐴 ) ) ↑ 2 ) − ( ( normℎ ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) ↑ 2 ) ) ) |
| 18 | normge0 | ⊢ ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ∈ ℋ → 0 ≤ ( normℎ ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) ) | |
| 19 | 7 18 | ax-mp | ⊢ 0 ≤ ( normℎ ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) |
| 20 | normge0 | ⊢ ( ( ( projℎ ‘ 𝐺 ) ‘ 𝐴 ) ∈ ℋ → 0 ≤ ( normℎ ‘ ( ( projℎ ‘ 𝐺 ) ‘ 𝐴 ) ) ) | |
| 21 | 4 20 | ax-mp | ⊢ 0 ≤ ( normℎ ‘ ( ( projℎ ‘ 𝐺 ) ‘ 𝐴 ) ) |
| 22 | 8 5 | le2sqi | ⊢ ( ( 0 ≤ ( normℎ ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) ∧ 0 ≤ ( normℎ ‘ ( ( projℎ ‘ 𝐺 ) ‘ 𝐴 ) ) ) → ( ( normℎ ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) ≤ ( normℎ ‘ ( ( projℎ ‘ 𝐺 ) ‘ 𝐴 ) ) ↔ ( ( normℎ ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) ↑ 2 ) ≤ ( ( normℎ ‘ ( ( projℎ ‘ 𝐺 ) ‘ 𝐴 ) ) ↑ 2 ) ) ) |
| 23 | 19 21 22 | mp2an | ⊢ ( ( normℎ ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) ≤ ( normℎ ‘ ( ( projℎ ‘ 𝐺 ) ‘ 𝐴 ) ) ↔ ( ( normℎ ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) ↑ 2 ) ≤ ( ( normℎ ‘ ( ( projℎ ‘ 𝐺 ) ‘ 𝐴 ) ) ↑ 2 ) ) |
| 24 | 10 17 23 | 3bitr4i | ⊢ ( 0 ≤ ( ( ( ( projℎ ‘ 𝐺 ) ‘ 𝐴 ) −ℎ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) ·ih 𝐴 ) ↔ ( normℎ ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) ≤ ( normℎ ‘ ( ( projℎ ‘ 𝐺 ) ‘ 𝐴 ) ) ) |