This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Theorem 4.5(v)<->(vi) of Beran p. 112. (Contributed by NM, 13-Aug-2000) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pjidm.1 | |- H e. CH |
|
| pjidm.2 | |- A e. ~H |
||
| pjsslem.1 | |- G e. CH |
||
| Assertion | pjdifnormii | |- ( 0 <_ ( ( ( ( projh ` G ) ` A ) -h ( ( projh ` H ) ` A ) ) .ih A ) <-> ( normh ` ( ( projh ` H ) ` A ) ) <_ ( normh ` ( ( projh ` G ) ` A ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pjidm.1 | |- H e. CH |
|
| 2 | pjidm.2 | |- A e. ~H |
|
| 3 | pjsslem.1 | |- G e. CH |
|
| 4 | 3 2 | pjhclii | |- ( ( projh ` G ) ` A ) e. ~H |
| 5 | 4 | normcli | |- ( normh ` ( ( projh ` G ) ` A ) ) e. RR |
| 6 | 5 | resqcli | |- ( ( normh ` ( ( projh ` G ) ` A ) ) ^ 2 ) e. RR |
| 7 | 1 2 | pjhclii | |- ( ( projh ` H ) ` A ) e. ~H |
| 8 | 7 | normcli | |- ( normh ` ( ( projh ` H ) ` A ) ) e. RR |
| 9 | 8 | resqcli | |- ( ( normh ` ( ( projh ` H ) ` A ) ) ^ 2 ) e. RR |
| 10 | 6 9 | subge0i | |- ( 0 <_ ( ( ( normh ` ( ( projh ` G ) ` A ) ) ^ 2 ) - ( ( normh ` ( ( projh ` H ) ` A ) ) ^ 2 ) ) <-> ( ( normh ` ( ( projh ` H ) ` A ) ) ^ 2 ) <_ ( ( normh ` ( ( projh ` G ) ` A ) ) ^ 2 ) ) |
| 11 | his2sub | |- ( ( ( ( projh ` G ) ` A ) e. ~H /\ ( ( projh ` H ) ` A ) e. ~H /\ A e. ~H ) -> ( ( ( ( projh ` G ) ` A ) -h ( ( projh ` H ) ` A ) ) .ih A ) = ( ( ( ( projh ` G ) ` A ) .ih A ) - ( ( ( projh ` H ) ` A ) .ih A ) ) ) |
|
| 12 | 4 7 2 11 | mp3an | |- ( ( ( ( projh ` G ) ` A ) -h ( ( projh ` H ) ` A ) ) .ih A ) = ( ( ( ( projh ` G ) ` A ) .ih A ) - ( ( ( projh ` H ) ` A ) .ih A ) ) |
| 13 | 3 2 | pjinormii | |- ( ( ( projh ` G ) ` A ) .ih A ) = ( ( normh ` ( ( projh ` G ) ` A ) ) ^ 2 ) |
| 14 | 1 2 | pjinormii | |- ( ( ( projh ` H ) ` A ) .ih A ) = ( ( normh ` ( ( projh ` H ) ` A ) ) ^ 2 ) |
| 15 | 13 14 | oveq12i | |- ( ( ( ( projh ` G ) ` A ) .ih A ) - ( ( ( projh ` H ) ` A ) .ih A ) ) = ( ( ( normh ` ( ( projh ` G ) ` A ) ) ^ 2 ) - ( ( normh ` ( ( projh ` H ) ` A ) ) ^ 2 ) ) |
| 16 | 12 15 | eqtri | |- ( ( ( ( projh ` G ) ` A ) -h ( ( projh ` H ) ` A ) ) .ih A ) = ( ( ( normh ` ( ( projh ` G ) ` A ) ) ^ 2 ) - ( ( normh ` ( ( projh ` H ) ` A ) ) ^ 2 ) ) |
| 17 | 16 | breq2i | |- ( 0 <_ ( ( ( ( projh ` G ) ` A ) -h ( ( projh ` H ) ` A ) ) .ih A ) <-> 0 <_ ( ( ( normh ` ( ( projh ` G ) ` A ) ) ^ 2 ) - ( ( normh ` ( ( projh ` H ) ` A ) ) ^ 2 ) ) ) |
| 18 | normge0 | |- ( ( ( projh ` H ) ` A ) e. ~H -> 0 <_ ( normh ` ( ( projh ` H ) ` A ) ) ) |
|
| 19 | 7 18 | ax-mp | |- 0 <_ ( normh ` ( ( projh ` H ) ` A ) ) |
| 20 | normge0 | |- ( ( ( projh ` G ) ` A ) e. ~H -> 0 <_ ( normh ` ( ( projh ` G ) ` A ) ) ) |
|
| 21 | 4 20 | ax-mp | |- 0 <_ ( normh ` ( ( projh ` G ) ` A ) ) |
| 22 | 8 5 | le2sqi | |- ( ( 0 <_ ( normh ` ( ( projh ` H ) ` A ) ) /\ 0 <_ ( normh ` ( ( projh ` G ) ` A ) ) ) -> ( ( normh ` ( ( projh ` H ) ` A ) ) <_ ( normh ` ( ( projh ` G ) ` A ) ) <-> ( ( normh ` ( ( projh ` H ) ` A ) ) ^ 2 ) <_ ( ( normh ` ( ( projh ` G ) ` A ) ) ^ 2 ) ) ) |
| 23 | 19 21 22 | mp2an | |- ( ( normh ` ( ( projh ` H ) ` A ) ) <_ ( normh ` ( ( projh ` G ) ` A ) ) <-> ( ( normh ` ( ( projh ` H ) ` A ) ) ^ 2 ) <_ ( ( normh ` ( ( projh ` G ) ` A ) ) ^ 2 ) ) |
| 24 | 10 17 23 | 3bitr4i | |- ( 0 <_ ( ( ( ( projh ` G ) ` A ) -h ( ( projh ` H ) ` A ) ) .ih A ) <-> ( normh ` ( ( projh ` H ) ` A ) ) <_ ( normh ` ( ( projh ` G ) ` A ) ) ) |