This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The inner product (as a function) on a subspace is a restriction of the inner product (as a function) on the parent space. (Contributed by NM, 28-Jan-2008) (Revised by AV, 19-Oct-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | phssip.x | ⊢ 𝑋 = ( 𝑊 ↾s 𝑈 ) | |
| phssip.s | ⊢ 𝑆 = ( LSubSp ‘ 𝑊 ) | ||
| phssip.i | ⊢ · = ( ·if ‘ 𝑊 ) | ||
| phssip.p | ⊢ 𝑃 = ( ·if ‘ 𝑋 ) | ||
| Assertion | phssip | ⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆 ) → 𝑃 = ( · ↾ ( 𝑈 × 𝑈 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | phssip.x | ⊢ 𝑋 = ( 𝑊 ↾s 𝑈 ) | |
| 2 | phssip.s | ⊢ 𝑆 = ( LSubSp ‘ 𝑊 ) | |
| 3 | phssip.i | ⊢ · = ( ·if ‘ 𝑊 ) | |
| 4 | phssip.p | ⊢ 𝑃 = ( ·if ‘ 𝑋 ) | |
| 5 | eqid | ⊢ ( Base ‘ 𝑋 ) = ( Base ‘ 𝑋 ) | |
| 6 | eqid | ⊢ ( ·𝑖 ‘ 𝑋 ) = ( ·𝑖 ‘ 𝑋 ) | |
| 7 | 5 6 4 | ipffval | ⊢ 𝑃 = ( 𝑥 ∈ ( Base ‘ 𝑋 ) , 𝑦 ∈ ( Base ‘ 𝑋 ) ↦ ( 𝑥 ( ·𝑖 ‘ 𝑋 ) 𝑦 ) ) |
| 8 | phllmod | ⊢ ( 𝑊 ∈ PreHil → 𝑊 ∈ LMod ) | |
| 9 | 2 | lsssubg | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑆 ) → 𝑈 ∈ ( SubGrp ‘ 𝑊 ) ) |
| 10 | 8 9 | sylan | ⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆 ) → 𝑈 ∈ ( SubGrp ‘ 𝑊 ) ) |
| 11 | 1 | subgbas | ⊢ ( 𝑈 ∈ ( SubGrp ‘ 𝑊 ) → 𝑈 = ( Base ‘ 𝑋 ) ) |
| 12 | 10 11 | syl | ⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆 ) → 𝑈 = ( Base ‘ 𝑋 ) ) |
| 13 | eqidd | ⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆 ) → ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) = ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) ) | |
| 14 | 12 12 13 | mpoeq123dv | ⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆 ) → ( 𝑥 ∈ 𝑈 , 𝑦 ∈ 𝑈 ↦ ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) ) = ( 𝑥 ∈ ( Base ‘ 𝑋 ) , 𝑦 ∈ ( Base ‘ 𝑋 ) ↦ ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) ) ) |
| 15 | eqid | ⊢ ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 ) | |
| 16 | 15 | subgss | ⊢ ( 𝑈 ∈ ( SubGrp ‘ 𝑊 ) → 𝑈 ⊆ ( Base ‘ 𝑊 ) ) |
| 17 | 10 16 | syl | ⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆 ) → 𝑈 ⊆ ( Base ‘ 𝑊 ) ) |
| 18 | resmpo | ⊢ ( ( 𝑈 ⊆ ( Base ‘ 𝑊 ) ∧ 𝑈 ⊆ ( Base ‘ 𝑊 ) ) → ( ( 𝑥 ∈ ( Base ‘ 𝑊 ) , 𝑦 ∈ ( Base ‘ 𝑊 ) ↦ ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) ) ↾ ( 𝑈 × 𝑈 ) ) = ( 𝑥 ∈ 𝑈 , 𝑦 ∈ 𝑈 ↦ ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) ) ) | |
| 19 | 17 17 18 | syl2anc | ⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆 ) → ( ( 𝑥 ∈ ( Base ‘ 𝑊 ) , 𝑦 ∈ ( Base ‘ 𝑊 ) ↦ ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) ) ↾ ( 𝑈 × 𝑈 ) ) = ( 𝑥 ∈ 𝑈 , 𝑦 ∈ 𝑈 ↦ ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) ) ) |
| 20 | eqid | ⊢ ( ·𝑖 ‘ 𝑊 ) = ( ·𝑖 ‘ 𝑊 ) | |
| 21 | 1 20 6 | ssipeq | ⊢ ( 𝑈 ∈ 𝑆 → ( ·𝑖 ‘ 𝑋 ) = ( ·𝑖 ‘ 𝑊 ) ) |
| 22 | 21 | adantl | ⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆 ) → ( ·𝑖 ‘ 𝑋 ) = ( ·𝑖 ‘ 𝑊 ) ) |
| 23 | 22 | oveqd | ⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆 ) → ( 𝑥 ( ·𝑖 ‘ 𝑋 ) 𝑦 ) = ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) ) |
| 24 | 23 | mpoeq3dv | ⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆 ) → ( 𝑥 ∈ ( Base ‘ 𝑋 ) , 𝑦 ∈ ( Base ‘ 𝑋 ) ↦ ( 𝑥 ( ·𝑖 ‘ 𝑋 ) 𝑦 ) ) = ( 𝑥 ∈ ( Base ‘ 𝑋 ) , 𝑦 ∈ ( Base ‘ 𝑋 ) ↦ ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) ) ) |
| 25 | 14 19 24 | 3eqtr4rd | ⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆 ) → ( 𝑥 ∈ ( Base ‘ 𝑋 ) , 𝑦 ∈ ( Base ‘ 𝑋 ) ↦ ( 𝑥 ( ·𝑖 ‘ 𝑋 ) 𝑦 ) ) = ( ( 𝑥 ∈ ( Base ‘ 𝑊 ) , 𝑦 ∈ ( Base ‘ 𝑊 ) ↦ ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) ) ↾ ( 𝑈 × 𝑈 ) ) ) |
| 26 | 7 25 | eqtrid | ⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆 ) → 𝑃 = ( ( 𝑥 ∈ ( Base ‘ 𝑊 ) , 𝑦 ∈ ( Base ‘ 𝑊 ) ↦ ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) ) ↾ ( 𝑈 × 𝑈 ) ) ) |
| 27 | 15 20 3 | ipffval | ⊢ · = ( 𝑥 ∈ ( Base ‘ 𝑊 ) , 𝑦 ∈ ( Base ‘ 𝑊 ) ↦ ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) ) |
| 28 | 27 | a1i | ⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆 ) → · = ( 𝑥 ∈ ( Base ‘ 𝑊 ) , 𝑦 ∈ ( Base ‘ 𝑊 ) ↦ ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) ) ) |
| 29 | 28 | reseq1d | ⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆 ) → ( · ↾ ( 𝑈 × 𝑈 ) ) = ( ( 𝑥 ∈ ( Base ‘ 𝑊 ) , 𝑦 ∈ ( Base ‘ 𝑊 ) ↦ ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) ) ↾ ( 𝑈 × 𝑈 ) ) ) |
| 30 | 26 29 | eqtr4d | ⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝑆 ) → 𝑃 = ( · ↾ ( 𝑈 × 𝑈 ) ) ) |