This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The inner product (as a function) on a subspace is a restriction of the inner product (as a function) on the parent space. (Contributed by NM, 28-Jan-2008) (Revised by AV, 19-Oct-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | phssip.x | |- X = ( W |`s U ) |
|
| phssip.s | |- S = ( LSubSp ` W ) |
||
| phssip.i | |- .x. = ( .if ` W ) |
||
| phssip.p | |- P = ( .if ` X ) |
||
| Assertion | phssip | |- ( ( W e. PreHil /\ U e. S ) -> P = ( .x. |` ( U X. U ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | phssip.x | |- X = ( W |`s U ) |
|
| 2 | phssip.s | |- S = ( LSubSp ` W ) |
|
| 3 | phssip.i | |- .x. = ( .if ` W ) |
|
| 4 | phssip.p | |- P = ( .if ` X ) |
|
| 5 | eqid | |- ( Base ` X ) = ( Base ` X ) |
|
| 6 | eqid | |- ( .i ` X ) = ( .i ` X ) |
|
| 7 | 5 6 4 | ipffval | |- P = ( x e. ( Base ` X ) , y e. ( Base ` X ) |-> ( x ( .i ` X ) y ) ) |
| 8 | phllmod | |- ( W e. PreHil -> W e. LMod ) |
|
| 9 | 2 | lsssubg | |- ( ( W e. LMod /\ U e. S ) -> U e. ( SubGrp ` W ) ) |
| 10 | 8 9 | sylan | |- ( ( W e. PreHil /\ U e. S ) -> U e. ( SubGrp ` W ) ) |
| 11 | 1 | subgbas | |- ( U e. ( SubGrp ` W ) -> U = ( Base ` X ) ) |
| 12 | 10 11 | syl | |- ( ( W e. PreHil /\ U e. S ) -> U = ( Base ` X ) ) |
| 13 | eqidd | |- ( ( W e. PreHil /\ U e. S ) -> ( x ( .i ` W ) y ) = ( x ( .i ` W ) y ) ) |
|
| 14 | 12 12 13 | mpoeq123dv | |- ( ( W e. PreHil /\ U e. S ) -> ( x e. U , y e. U |-> ( x ( .i ` W ) y ) ) = ( x e. ( Base ` X ) , y e. ( Base ` X ) |-> ( x ( .i ` W ) y ) ) ) |
| 15 | eqid | |- ( Base ` W ) = ( Base ` W ) |
|
| 16 | 15 | subgss | |- ( U e. ( SubGrp ` W ) -> U C_ ( Base ` W ) ) |
| 17 | 10 16 | syl | |- ( ( W e. PreHil /\ U e. S ) -> U C_ ( Base ` W ) ) |
| 18 | resmpo | |- ( ( U C_ ( Base ` W ) /\ U C_ ( Base ` W ) ) -> ( ( x e. ( Base ` W ) , y e. ( Base ` W ) |-> ( x ( .i ` W ) y ) ) |` ( U X. U ) ) = ( x e. U , y e. U |-> ( x ( .i ` W ) y ) ) ) |
|
| 19 | 17 17 18 | syl2anc | |- ( ( W e. PreHil /\ U e. S ) -> ( ( x e. ( Base ` W ) , y e. ( Base ` W ) |-> ( x ( .i ` W ) y ) ) |` ( U X. U ) ) = ( x e. U , y e. U |-> ( x ( .i ` W ) y ) ) ) |
| 20 | eqid | |- ( .i ` W ) = ( .i ` W ) |
|
| 21 | 1 20 6 | ssipeq | |- ( U e. S -> ( .i ` X ) = ( .i ` W ) ) |
| 22 | 21 | adantl | |- ( ( W e. PreHil /\ U e. S ) -> ( .i ` X ) = ( .i ` W ) ) |
| 23 | 22 | oveqd | |- ( ( W e. PreHil /\ U e. S ) -> ( x ( .i ` X ) y ) = ( x ( .i ` W ) y ) ) |
| 24 | 23 | mpoeq3dv | |- ( ( W e. PreHil /\ U e. S ) -> ( x e. ( Base ` X ) , y e. ( Base ` X ) |-> ( x ( .i ` X ) y ) ) = ( x e. ( Base ` X ) , y e. ( Base ` X ) |-> ( x ( .i ` W ) y ) ) ) |
| 25 | 14 19 24 | 3eqtr4rd | |- ( ( W e. PreHil /\ U e. S ) -> ( x e. ( Base ` X ) , y e. ( Base ` X ) |-> ( x ( .i ` X ) y ) ) = ( ( x e. ( Base ` W ) , y e. ( Base ` W ) |-> ( x ( .i ` W ) y ) ) |` ( U X. U ) ) ) |
| 26 | 7 25 | eqtrid | |- ( ( W e. PreHil /\ U e. S ) -> P = ( ( x e. ( Base ` W ) , y e. ( Base ` W ) |-> ( x ( .i ` W ) y ) ) |` ( U X. U ) ) ) |
| 27 | 15 20 3 | ipffval | |- .x. = ( x e. ( Base ` W ) , y e. ( Base ` W ) |-> ( x ( .i ` W ) y ) ) |
| 28 | 27 | a1i | |- ( ( W e. PreHil /\ U e. S ) -> .x. = ( x e. ( Base ` W ) , y e. ( Base ` W ) |-> ( x ( .i ` W ) y ) ) ) |
| 29 | 28 | reseq1d | |- ( ( W e. PreHil /\ U e. S ) -> ( .x. |` ( U X. U ) ) = ( ( x e. ( Base ` W ) , y e. ( Base ` W ) |-> ( x ( .i ` W ) y ) ) |` ( U X. U ) ) ) |
| 30 | 26 29 | eqtr4d | |- ( ( W e. PreHil /\ U e. S ) -> P = ( .x. |` ( U X. U ) ) ) |