This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A prefix of a word is a function from a half-open range of nonnegative integers of the same length as the prefix to the set of symbols for the original word. (Contributed by AV, 2-May-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pfxf | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ) → ( 𝑊 prefix 𝐿 ) : ( 0 ..^ 𝐿 ) ⟶ 𝑉 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pfxmpt | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ) → ( 𝑊 prefix 𝐿 ) = ( 𝑥 ∈ ( 0 ..^ 𝐿 ) ↦ ( 𝑊 ‘ 𝑥 ) ) ) | |
| 2 | simpll | ⊢ ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ) ∧ 𝑥 ∈ ( 0 ..^ 𝐿 ) ) → 𝑊 ∈ Word 𝑉 ) | |
| 3 | elfzuz3 | ⊢ ( 𝐿 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) → ( ♯ ‘ 𝑊 ) ∈ ( ℤ≥ ‘ 𝐿 ) ) | |
| 4 | 3 | adantl | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ) → ( ♯ ‘ 𝑊 ) ∈ ( ℤ≥ ‘ 𝐿 ) ) |
| 5 | fzoss2 | ⊢ ( ( ♯ ‘ 𝑊 ) ∈ ( ℤ≥ ‘ 𝐿 ) → ( 0 ..^ 𝐿 ) ⊆ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) | |
| 6 | 4 5 | syl | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ) → ( 0 ..^ 𝐿 ) ⊆ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) |
| 7 | 6 | sselda | ⊢ ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ) ∧ 𝑥 ∈ ( 0 ..^ 𝐿 ) ) → 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) |
| 8 | wrdsymbcl | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( 𝑊 ‘ 𝑥 ) ∈ 𝑉 ) | |
| 9 | 2 7 8 | syl2anc | ⊢ ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ) ∧ 𝑥 ∈ ( 0 ..^ 𝐿 ) ) → ( 𝑊 ‘ 𝑥 ) ∈ 𝑉 ) |
| 10 | 1 9 | fmpt3d | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ) → ( 𝑊 prefix 𝐿 ) : ( 0 ..^ 𝐿 ) ⟶ 𝑉 ) |