This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A function is empty iff it has an empty domain. (Contributed by AV, 10-Feb-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | f0dom0 | ⊢ ( 𝐹 : 𝑋 ⟶ 𝑌 → ( 𝑋 = ∅ ↔ 𝐹 = ∅ ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | feq2 | ⊢ ( 𝑋 = ∅ → ( 𝐹 : 𝑋 ⟶ 𝑌 ↔ 𝐹 : ∅ ⟶ 𝑌 ) ) | |
| 2 | f0bi | ⊢ ( 𝐹 : ∅ ⟶ 𝑌 ↔ 𝐹 = ∅ ) | |
| 3 | 2 | biimpi | ⊢ ( 𝐹 : ∅ ⟶ 𝑌 → 𝐹 = ∅ ) |
| 4 | 1 3 | biimtrdi | ⊢ ( 𝑋 = ∅ → ( 𝐹 : 𝑋 ⟶ 𝑌 → 𝐹 = ∅ ) ) |
| 5 | 4 | com12 | ⊢ ( 𝐹 : 𝑋 ⟶ 𝑌 → ( 𝑋 = ∅ → 𝐹 = ∅ ) ) |
| 6 | feq1 | ⊢ ( 𝐹 = ∅ → ( 𝐹 : 𝑋 ⟶ 𝑌 ↔ ∅ : 𝑋 ⟶ 𝑌 ) ) | |
| 7 | fdm | ⊢ ( ∅ : 𝑋 ⟶ 𝑌 → dom ∅ = 𝑋 ) | |
| 8 | dm0 | ⊢ dom ∅ = ∅ | |
| 9 | 7 8 | eqtr3di | ⊢ ( ∅ : 𝑋 ⟶ 𝑌 → 𝑋 = ∅ ) |
| 10 | 6 9 | biimtrdi | ⊢ ( 𝐹 = ∅ → ( 𝐹 : 𝑋 ⟶ 𝑌 → 𝑋 = ∅ ) ) |
| 11 | 10 | com12 | ⊢ ( 𝐹 : 𝑋 ⟶ 𝑌 → ( 𝐹 = ∅ → 𝑋 = ∅ ) ) |
| 12 | 5 11 | impbid | ⊢ ( 𝐹 : 𝑋 ⟶ 𝑌 → ( 𝑋 = ∅ ↔ 𝐹 = ∅ ) ) |