This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The shortest form of a partition-equivalence theorem with intersection and general R . Cf. br1cossincnvepres . Cf. pet . (Contributed by Peter Mazsa, 23-Sep-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | petincnvepres | ⊢ ( ( 𝑅 ∩ ( ◡ E ↾ 𝐴 ) ) Part 𝐴 ↔ ≀ ( 𝑅 ∩ ( ◡ E ↾ 𝐴 ) ) ErALTV 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | petincnvepres2 | ⊢ ( ( Disj ( 𝑅 ∩ ( ◡ E ↾ 𝐴 ) ) ∧ ( dom ( 𝑅 ∩ ( ◡ E ↾ 𝐴 ) ) / ( 𝑅 ∩ ( ◡ E ↾ 𝐴 ) ) ) = 𝐴 ) ↔ ( EqvRel ≀ ( 𝑅 ∩ ( ◡ E ↾ 𝐴 ) ) ∧ ( dom ≀ ( 𝑅 ∩ ( ◡ E ↾ 𝐴 ) ) / ≀ ( 𝑅 ∩ ( ◡ E ↾ 𝐴 ) ) ) = 𝐴 ) ) | |
| 2 | dfpart2 | ⊢ ( ( 𝑅 ∩ ( ◡ E ↾ 𝐴 ) ) Part 𝐴 ↔ ( Disj ( 𝑅 ∩ ( ◡ E ↾ 𝐴 ) ) ∧ ( dom ( 𝑅 ∩ ( ◡ E ↾ 𝐴 ) ) / ( 𝑅 ∩ ( ◡ E ↾ 𝐴 ) ) ) = 𝐴 ) ) | |
| 3 | dferALTV2 | ⊢ ( ≀ ( 𝑅 ∩ ( ◡ E ↾ 𝐴 ) ) ErALTV 𝐴 ↔ ( EqvRel ≀ ( 𝑅 ∩ ( ◡ E ↾ 𝐴 ) ) ∧ ( dom ≀ ( 𝑅 ∩ ( ◡ E ↾ 𝐴 ) ) / ≀ ( 𝑅 ∩ ( ◡ E ↾ 𝐴 ) ) ) = 𝐴 ) ) | |
| 4 | 1 2 3 | 3bitr4i | ⊢ ( ( 𝑅 ∩ ( ◡ E ↾ 𝐴 ) ) Part 𝐴 ↔ ≀ ( 𝑅 ∩ ( ◡ E ↾ 𝐴 ) ) ErALTV 𝐴 ) |