This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Peter Mazsa
Partition-Equivalence Theorems
petincnvepres
Metamath Proof Explorer
Description: The shortest form of a partition-equivalence theorem with intersection and
general R . Cf. br1cossincnvepres . Cf. pet . (Contributed by Peter Mazsa , 23-Sep-2021)
Ref
Expression
Assertion
petincnvepres
⊢ R ∩ E -1 ↾ A Part A ↔ ≀ R ∩ E -1 ↾ A ErALTV A
Proof
Step
Hyp
Ref
Expression
1
petincnvepres2
⊢ Disj R ∩ E -1 ↾ A ∧ dom ⁡ R ∩ E -1 ↾ A / R ∩ E -1 ↾ A = A ↔ EqvRel ≀ R ∩ E -1 ↾ A ∧ dom ⁡ ≀ R ∩ E -1 ↾ A / ≀ R ∩ E -1 ↾ A = A
2
dfpart2
⊢ R ∩ E -1 ↾ A Part A ↔ Disj R ∩ E -1 ↾ A ∧ dom ⁡ R ∩ E -1 ↾ A / R ∩ E -1 ↾ A = A
3
dferALTV2
⊢ ≀ R ∩ E -1 ↾ A ErALTV A ↔ EqvRel ≀ R ∩ E -1 ↾ A ∧ dom ⁡ ≀ R ∩ E -1 ↾ A / ≀ R ∩ E -1 ↾ A = A
4
1 2 3
3bitr4i
⊢ R ∩ E -1 ↾ A Part A ↔ ≀ R ∩ E -1 ↾ A ErALTV A