This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Equivalence relation with natural domain predicate, see the comment of df-ers . (Contributed by Peter Mazsa, 26-Jun-2021) (Revised by Peter Mazsa, 30-Aug-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dferALTV2 | ⊢ ( 𝑅 ErALTV 𝐴 ↔ ( EqvRel 𝑅 ∧ ( dom 𝑅 / 𝑅 ) = 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-erALTV | ⊢ ( 𝑅 ErALTV 𝐴 ↔ ( EqvRel 𝑅 ∧ 𝑅 DomainQs 𝐴 ) ) | |
| 2 | df-dmqs | ⊢ ( 𝑅 DomainQs 𝐴 ↔ ( dom 𝑅 / 𝑅 ) = 𝐴 ) | |
| 3 | 2 | anbi2i | ⊢ ( ( EqvRel 𝑅 ∧ 𝑅 DomainQs 𝐴 ) ↔ ( EqvRel 𝑅 ∧ ( dom 𝑅 / 𝑅 ) = 𝐴 ) ) |
| 4 | 1 3 | bitri | ⊢ ( 𝑅 ErALTV 𝐴 ↔ ( EqvRel 𝑅 ∧ ( dom 𝑅 / 𝑅 ) = 𝐴 ) ) |