This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Projective subspace sum operation. (Contributed by NM, 29-Dec-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | paddfval.l | ⊢ ≤ = ( le ‘ 𝐾 ) | |
| paddfval.j | ⊢ ∨ = ( join ‘ 𝐾 ) | ||
| paddfval.a | ⊢ 𝐴 = ( Atoms ‘ 𝐾 ) | ||
| paddfval.p | ⊢ + = ( +𝑃 ‘ 𝐾 ) | ||
| Assertion | paddfval | ⊢ ( 𝐾 ∈ 𝐵 → + = ( 𝑚 ∈ 𝒫 𝐴 , 𝑛 ∈ 𝒫 𝐴 ↦ ( ( 𝑚 ∪ 𝑛 ) ∪ { 𝑝 ∈ 𝐴 ∣ ∃ 𝑞 ∈ 𝑚 ∃ 𝑟 ∈ 𝑛 𝑝 ≤ ( 𝑞 ∨ 𝑟 ) } ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | paddfval.l | ⊢ ≤ = ( le ‘ 𝐾 ) | |
| 2 | paddfval.j | ⊢ ∨ = ( join ‘ 𝐾 ) | |
| 3 | paddfval.a | ⊢ 𝐴 = ( Atoms ‘ 𝐾 ) | |
| 4 | paddfval.p | ⊢ + = ( +𝑃 ‘ 𝐾 ) | |
| 5 | elex | ⊢ ( 𝐾 ∈ 𝐵 → 𝐾 ∈ V ) | |
| 6 | fveq2 | ⊢ ( ℎ = 𝐾 → ( Atoms ‘ ℎ ) = ( Atoms ‘ 𝐾 ) ) | |
| 7 | 6 3 | eqtr4di | ⊢ ( ℎ = 𝐾 → ( Atoms ‘ ℎ ) = 𝐴 ) |
| 8 | 7 | pweqd | ⊢ ( ℎ = 𝐾 → 𝒫 ( Atoms ‘ ℎ ) = 𝒫 𝐴 ) |
| 9 | eqidd | ⊢ ( ℎ = 𝐾 → 𝑝 = 𝑝 ) | |
| 10 | fveq2 | ⊢ ( ℎ = 𝐾 → ( le ‘ ℎ ) = ( le ‘ 𝐾 ) ) | |
| 11 | 10 1 | eqtr4di | ⊢ ( ℎ = 𝐾 → ( le ‘ ℎ ) = ≤ ) |
| 12 | fveq2 | ⊢ ( ℎ = 𝐾 → ( join ‘ ℎ ) = ( join ‘ 𝐾 ) ) | |
| 13 | 12 2 | eqtr4di | ⊢ ( ℎ = 𝐾 → ( join ‘ ℎ ) = ∨ ) |
| 14 | 13 | oveqd | ⊢ ( ℎ = 𝐾 → ( 𝑞 ( join ‘ ℎ ) 𝑟 ) = ( 𝑞 ∨ 𝑟 ) ) |
| 15 | 9 11 14 | breq123d | ⊢ ( ℎ = 𝐾 → ( 𝑝 ( le ‘ ℎ ) ( 𝑞 ( join ‘ ℎ ) 𝑟 ) ↔ 𝑝 ≤ ( 𝑞 ∨ 𝑟 ) ) ) |
| 16 | 15 | 2rexbidv | ⊢ ( ℎ = 𝐾 → ( ∃ 𝑞 ∈ 𝑚 ∃ 𝑟 ∈ 𝑛 𝑝 ( le ‘ ℎ ) ( 𝑞 ( join ‘ ℎ ) 𝑟 ) ↔ ∃ 𝑞 ∈ 𝑚 ∃ 𝑟 ∈ 𝑛 𝑝 ≤ ( 𝑞 ∨ 𝑟 ) ) ) |
| 17 | 7 16 | rabeqbidv | ⊢ ( ℎ = 𝐾 → { 𝑝 ∈ ( Atoms ‘ ℎ ) ∣ ∃ 𝑞 ∈ 𝑚 ∃ 𝑟 ∈ 𝑛 𝑝 ( le ‘ ℎ ) ( 𝑞 ( join ‘ ℎ ) 𝑟 ) } = { 𝑝 ∈ 𝐴 ∣ ∃ 𝑞 ∈ 𝑚 ∃ 𝑟 ∈ 𝑛 𝑝 ≤ ( 𝑞 ∨ 𝑟 ) } ) |
| 18 | 17 | uneq2d | ⊢ ( ℎ = 𝐾 → ( ( 𝑚 ∪ 𝑛 ) ∪ { 𝑝 ∈ ( Atoms ‘ ℎ ) ∣ ∃ 𝑞 ∈ 𝑚 ∃ 𝑟 ∈ 𝑛 𝑝 ( le ‘ ℎ ) ( 𝑞 ( join ‘ ℎ ) 𝑟 ) } ) = ( ( 𝑚 ∪ 𝑛 ) ∪ { 𝑝 ∈ 𝐴 ∣ ∃ 𝑞 ∈ 𝑚 ∃ 𝑟 ∈ 𝑛 𝑝 ≤ ( 𝑞 ∨ 𝑟 ) } ) ) |
| 19 | 8 8 18 | mpoeq123dv | ⊢ ( ℎ = 𝐾 → ( 𝑚 ∈ 𝒫 ( Atoms ‘ ℎ ) , 𝑛 ∈ 𝒫 ( Atoms ‘ ℎ ) ↦ ( ( 𝑚 ∪ 𝑛 ) ∪ { 𝑝 ∈ ( Atoms ‘ ℎ ) ∣ ∃ 𝑞 ∈ 𝑚 ∃ 𝑟 ∈ 𝑛 𝑝 ( le ‘ ℎ ) ( 𝑞 ( join ‘ ℎ ) 𝑟 ) } ) ) = ( 𝑚 ∈ 𝒫 𝐴 , 𝑛 ∈ 𝒫 𝐴 ↦ ( ( 𝑚 ∪ 𝑛 ) ∪ { 𝑝 ∈ 𝐴 ∣ ∃ 𝑞 ∈ 𝑚 ∃ 𝑟 ∈ 𝑛 𝑝 ≤ ( 𝑞 ∨ 𝑟 ) } ) ) ) |
| 20 | df-padd | ⊢ +𝑃 = ( ℎ ∈ V ↦ ( 𝑚 ∈ 𝒫 ( Atoms ‘ ℎ ) , 𝑛 ∈ 𝒫 ( Atoms ‘ ℎ ) ↦ ( ( 𝑚 ∪ 𝑛 ) ∪ { 𝑝 ∈ ( Atoms ‘ ℎ ) ∣ ∃ 𝑞 ∈ 𝑚 ∃ 𝑟 ∈ 𝑛 𝑝 ( le ‘ ℎ ) ( 𝑞 ( join ‘ ℎ ) 𝑟 ) } ) ) ) | |
| 21 | 3 | fvexi | ⊢ 𝐴 ∈ V |
| 22 | 21 | pwex | ⊢ 𝒫 𝐴 ∈ V |
| 23 | 22 22 | mpoex | ⊢ ( 𝑚 ∈ 𝒫 𝐴 , 𝑛 ∈ 𝒫 𝐴 ↦ ( ( 𝑚 ∪ 𝑛 ) ∪ { 𝑝 ∈ 𝐴 ∣ ∃ 𝑞 ∈ 𝑚 ∃ 𝑟 ∈ 𝑛 𝑝 ≤ ( 𝑞 ∨ 𝑟 ) } ) ) ∈ V |
| 24 | 19 20 23 | fvmpt | ⊢ ( 𝐾 ∈ V → ( +𝑃 ‘ 𝐾 ) = ( 𝑚 ∈ 𝒫 𝐴 , 𝑛 ∈ 𝒫 𝐴 ↦ ( ( 𝑚 ∪ 𝑛 ) ∪ { 𝑝 ∈ 𝐴 ∣ ∃ 𝑞 ∈ 𝑚 ∃ 𝑟 ∈ 𝑛 𝑝 ≤ ( 𝑞 ∨ 𝑟 ) } ) ) ) |
| 25 | 4 24 | eqtrid | ⊢ ( 𝐾 ∈ V → + = ( 𝑚 ∈ 𝒫 𝐴 , 𝑛 ∈ 𝒫 𝐴 ↦ ( ( 𝑚 ∪ 𝑛 ) ∪ { 𝑝 ∈ 𝐴 ∣ ∃ 𝑞 ∈ 𝑚 ∃ 𝑟 ∈ 𝑛 𝑝 ≤ ( 𝑞 ∨ 𝑟 ) } ) ) ) |
| 26 | 5 25 | syl | ⊢ ( 𝐾 ∈ 𝐵 → + = ( 𝑚 ∈ 𝒫 𝐴 , 𝑛 ∈ 𝒫 𝐴 ↦ ( ( 𝑚 ∪ 𝑛 ) ∪ { 𝑝 ∈ 𝐴 ∣ ∃ 𝑞 ∈ 𝑚 ∃ 𝑟 ∈ 𝑛 𝑝 ≤ ( 𝑞 ∨ 𝑟 ) } ) ) ) |