This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A triple syllogism inference. (Contributed by NM, 29-Dec-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | syl3anbr.1 | ⊢ ( 𝜓 ↔ 𝜑 ) | |
| syl3anbr.2 | ⊢ ( 𝜃 ↔ 𝜒 ) | ||
| syl3anbr.3 | ⊢ ( 𝜂 ↔ 𝜏 ) | ||
| syl3anbr.4 | ⊢ ( ( 𝜓 ∧ 𝜃 ∧ 𝜂 ) → 𝜁 ) | ||
| Assertion | syl3anbr | ⊢ ( ( 𝜑 ∧ 𝜒 ∧ 𝜏 ) → 𝜁 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syl3anbr.1 | ⊢ ( 𝜓 ↔ 𝜑 ) | |
| 2 | syl3anbr.2 | ⊢ ( 𝜃 ↔ 𝜒 ) | |
| 3 | syl3anbr.3 | ⊢ ( 𝜂 ↔ 𝜏 ) | |
| 4 | syl3anbr.4 | ⊢ ( ( 𝜓 ∧ 𝜃 ∧ 𝜂 ) → 𝜁 ) | |
| 5 | 1 | bicomi | ⊢ ( 𝜑 ↔ 𝜓 ) |
| 6 | 2 | bicomi | ⊢ ( 𝜒 ↔ 𝜃 ) |
| 7 | 3 | bicomi | ⊢ ( 𝜏 ↔ 𝜂 ) |
| 8 | 5 6 7 4 | syl3anb | ⊢ ( ( 𝜑 ∧ 𝜒 ∧ 𝜏 ) → 𝜁 ) |