This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Subset law for projective subspace sum. ( unss analog.) (Contributed by NM, 7-Mar-2012)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | paddss.a | ⊢ 𝐴 = ( Atoms ‘ 𝐾 ) | |
| paddss.s | ⊢ 𝑆 = ( PSubSp ‘ 𝐾 ) | ||
| paddss.p | ⊢ + = ( +𝑃 ‘ 𝐾 ) | ||
| Assertion | paddss | ⊢ ( ( 𝐾 ∈ 𝐵 ∧ ( 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ∈ 𝑆 ) ) → ( ( 𝑋 ⊆ 𝑍 ∧ 𝑌 ⊆ 𝑍 ) ↔ ( 𝑋 + 𝑌 ) ⊆ 𝑍 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | paddss.a | ⊢ 𝐴 = ( Atoms ‘ 𝐾 ) | |
| 2 | paddss.s | ⊢ 𝑆 = ( PSubSp ‘ 𝐾 ) | |
| 3 | paddss.p | ⊢ + = ( +𝑃 ‘ 𝐾 ) | |
| 4 | simpl | ⊢ ( ( 𝐾 ∈ 𝐵 ∧ ( 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ∈ 𝑆 ) ) → 𝐾 ∈ 𝐵 ) | |
| 5 | simpr1 | ⊢ ( ( 𝐾 ∈ 𝐵 ∧ ( 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ∈ 𝑆 ) ) → 𝑋 ⊆ 𝐴 ) | |
| 6 | simpr2 | ⊢ ( ( 𝐾 ∈ 𝐵 ∧ ( 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ∈ 𝑆 ) ) → 𝑌 ⊆ 𝐴 ) | |
| 7 | 1 2 | psubssat | ⊢ ( ( 𝐾 ∈ 𝐵 ∧ 𝑍 ∈ 𝑆 ) → 𝑍 ⊆ 𝐴 ) |
| 8 | 7 | 3ad2antr3 | ⊢ ( ( 𝐾 ∈ 𝐵 ∧ ( 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ∈ 𝑆 ) ) → 𝑍 ⊆ 𝐴 ) |
| 9 | 1 3 | paddssw1 | ⊢ ( ( 𝐾 ∈ 𝐵 ∧ ( 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴 ) ) → ( ( 𝑋 ⊆ 𝑍 ∧ 𝑌 ⊆ 𝑍 ) → ( 𝑋 + 𝑌 ) ⊆ ( 𝑍 + 𝑍 ) ) ) |
| 10 | 4 5 6 8 9 | syl13anc | ⊢ ( ( 𝐾 ∈ 𝐵 ∧ ( 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ∈ 𝑆 ) ) → ( ( 𝑋 ⊆ 𝑍 ∧ 𝑌 ⊆ 𝑍 ) → ( 𝑋 + 𝑌 ) ⊆ ( 𝑍 + 𝑍 ) ) ) |
| 11 | 2 3 | paddidm | ⊢ ( ( 𝐾 ∈ 𝐵 ∧ 𝑍 ∈ 𝑆 ) → ( 𝑍 + 𝑍 ) = 𝑍 ) |
| 12 | 11 | 3ad2antr3 | ⊢ ( ( 𝐾 ∈ 𝐵 ∧ ( 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ∈ 𝑆 ) ) → ( 𝑍 + 𝑍 ) = 𝑍 ) |
| 13 | 12 | sseq2d | ⊢ ( ( 𝐾 ∈ 𝐵 ∧ ( 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ∈ 𝑆 ) ) → ( ( 𝑋 + 𝑌 ) ⊆ ( 𝑍 + 𝑍 ) ↔ ( 𝑋 + 𝑌 ) ⊆ 𝑍 ) ) |
| 14 | 10 13 | sylibd | ⊢ ( ( 𝐾 ∈ 𝐵 ∧ ( 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ∈ 𝑆 ) ) → ( ( 𝑋 ⊆ 𝑍 ∧ 𝑌 ⊆ 𝑍 ) → ( 𝑋 + 𝑌 ) ⊆ 𝑍 ) ) |
| 15 | 1 3 | paddssw2 | ⊢ ( ( 𝐾 ∈ 𝐵 ∧ ( 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴 ) ) → ( ( 𝑋 + 𝑌 ) ⊆ 𝑍 → ( 𝑋 ⊆ 𝑍 ∧ 𝑌 ⊆ 𝑍 ) ) ) |
| 16 | 4 5 6 8 15 | syl13anc | ⊢ ( ( 𝐾 ∈ 𝐵 ∧ ( 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ∈ 𝑆 ) ) → ( ( 𝑋 + 𝑌 ) ⊆ 𝑍 → ( 𝑋 ⊆ 𝑍 ∧ 𝑌 ⊆ 𝑍 ) ) ) |
| 17 | 14 16 | impbid | ⊢ ( ( 𝐾 ∈ 𝐵 ∧ ( 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ∈ 𝑆 ) ) → ( ( 𝑋 ⊆ 𝑍 ∧ 𝑌 ⊆ 𝑍 ) ↔ ( 𝑋 + 𝑌 ) ⊆ 𝑍 ) ) |