This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Subset law for projective subspace sum valid for all subsets of atoms. (Contributed by NM, 14-Mar-2012)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | paddssw.a | ⊢ 𝐴 = ( Atoms ‘ 𝐾 ) | |
| paddssw.p | ⊢ + = ( +𝑃 ‘ 𝐾 ) | ||
| Assertion | paddssw2 | ⊢ ( ( 𝐾 ∈ 𝐵 ∧ ( 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴 ) ) → ( ( 𝑋 + 𝑌 ) ⊆ 𝑍 → ( 𝑋 ⊆ 𝑍 ∧ 𝑌 ⊆ 𝑍 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | paddssw.a | ⊢ 𝐴 = ( Atoms ‘ 𝐾 ) | |
| 2 | paddssw.p | ⊢ + = ( +𝑃 ‘ 𝐾 ) | |
| 3 | 1 2 | sspadd1 | ⊢ ( ( 𝐾 ∈ 𝐵 ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) → 𝑋 ⊆ ( 𝑋 + 𝑌 ) ) |
| 4 | 3 | 3adant3r3 | ⊢ ( ( 𝐾 ∈ 𝐵 ∧ ( 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴 ) ) → 𝑋 ⊆ ( 𝑋 + 𝑌 ) ) |
| 5 | sstr | ⊢ ( ( 𝑋 ⊆ ( 𝑋 + 𝑌 ) ∧ ( 𝑋 + 𝑌 ) ⊆ 𝑍 ) → 𝑋 ⊆ 𝑍 ) | |
| 6 | 4 5 | sylan | ⊢ ( ( ( 𝐾 ∈ 𝐵 ∧ ( 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴 ) ) ∧ ( 𝑋 + 𝑌 ) ⊆ 𝑍 ) → 𝑋 ⊆ 𝑍 ) |
| 7 | 6 | ex | ⊢ ( ( 𝐾 ∈ 𝐵 ∧ ( 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴 ) ) → ( ( 𝑋 + 𝑌 ) ⊆ 𝑍 → 𝑋 ⊆ 𝑍 ) ) |
| 8 | simpl | ⊢ ( ( 𝐾 ∈ 𝐵 ∧ ( 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴 ) ) → 𝐾 ∈ 𝐵 ) | |
| 9 | simpr2 | ⊢ ( ( 𝐾 ∈ 𝐵 ∧ ( 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴 ) ) → 𝑌 ⊆ 𝐴 ) | |
| 10 | simpr1 | ⊢ ( ( 𝐾 ∈ 𝐵 ∧ ( 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴 ) ) → 𝑋 ⊆ 𝐴 ) | |
| 11 | 1 2 | sspadd2 | ⊢ ( ( 𝐾 ∈ 𝐵 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑋 ⊆ 𝐴 ) → 𝑌 ⊆ ( 𝑋 + 𝑌 ) ) |
| 12 | 8 9 10 11 | syl3anc | ⊢ ( ( 𝐾 ∈ 𝐵 ∧ ( 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴 ) ) → 𝑌 ⊆ ( 𝑋 + 𝑌 ) ) |
| 13 | sstr | ⊢ ( ( 𝑌 ⊆ ( 𝑋 + 𝑌 ) ∧ ( 𝑋 + 𝑌 ) ⊆ 𝑍 ) → 𝑌 ⊆ 𝑍 ) | |
| 14 | 12 13 | sylan | ⊢ ( ( ( 𝐾 ∈ 𝐵 ∧ ( 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴 ) ) ∧ ( 𝑋 + 𝑌 ) ⊆ 𝑍 ) → 𝑌 ⊆ 𝑍 ) |
| 15 | 14 | ex | ⊢ ( ( 𝐾 ∈ 𝐵 ∧ ( 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴 ) ) → ( ( 𝑋 + 𝑌 ) ⊆ 𝑍 → 𝑌 ⊆ 𝑍 ) ) |
| 16 | 7 15 | jcad | ⊢ ( ( 𝐾 ∈ 𝐵 ∧ ( 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴 ) ) → ( ( 𝑋 + 𝑌 ) ⊆ 𝑍 → ( 𝑋 ⊆ 𝑍 ∧ 𝑌 ⊆ 𝑍 ) ) ) |