This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Subset law for projective subspace sum. ( unss analog.) (Contributed by NM, 7-Mar-2012)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | paddss.a | |- A = ( Atoms ` K ) |
|
| paddss.s | |- S = ( PSubSp ` K ) |
||
| paddss.p | |- .+ = ( +P ` K ) |
||
| Assertion | paddss | |- ( ( K e. B /\ ( X C_ A /\ Y C_ A /\ Z e. S ) ) -> ( ( X C_ Z /\ Y C_ Z ) <-> ( X .+ Y ) C_ Z ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | paddss.a | |- A = ( Atoms ` K ) |
|
| 2 | paddss.s | |- S = ( PSubSp ` K ) |
|
| 3 | paddss.p | |- .+ = ( +P ` K ) |
|
| 4 | simpl | |- ( ( K e. B /\ ( X C_ A /\ Y C_ A /\ Z e. S ) ) -> K e. B ) |
|
| 5 | simpr1 | |- ( ( K e. B /\ ( X C_ A /\ Y C_ A /\ Z e. S ) ) -> X C_ A ) |
|
| 6 | simpr2 | |- ( ( K e. B /\ ( X C_ A /\ Y C_ A /\ Z e. S ) ) -> Y C_ A ) |
|
| 7 | 1 2 | psubssat | |- ( ( K e. B /\ Z e. S ) -> Z C_ A ) |
| 8 | 7 | 3ad2antr3 | |- ( ( K e. B /\ ( X C_ A /\ Y C_ A /\ Z e. S ) ) -> Z C_ A ) |
| 9 | 1 3 | paddssw1 | |- ( ( K e. B /\ ( X C_ A /\ Y C_ A /\ Z C_ A ) ) -> ( ( X C_ Z /\ Y C_ Z ) -> ( X .+ Y ) C_ ( Z .+ Z ) ) ) |
| 10 | 4 5 6 8 9 | syl13anc | |- ( ( K e. B /\ ( X C_ A /\ Y C_ A /\ Z e. S ) ) -> ( ( X C_ Z /\ Y C_ Z ) -> ( X .+ Y ) C_ ( Z .+ Z ) ) ) |
| 11 | 2 3 | paddidm | |- ( ( K e. B /\ Z e. S ) -> ( Z .+ Z ) = Z ) |
| 12 | 11 | 3ad2antr3 | |- ( ( K e. B /\ ( X C_ A /\ Y C_ A /\ Z e. S ) ) -> ( Z .+ Z ) = Z ) |
| 13 | 12 | sseq2d | |- ( ( K e. B /\ ( X C_ A /\ Y C_ A /\ Z e. S ) ) -> ( ( X .+ Y ) C_ ( Z .+ Z ) <-> ( X .+ Y ) C_ Z ) ) |
| 14 | 10 13 | sylibd | |- ( ( K e. B /\ ( X C_ A /\ Y C_ A /\ Z e. S ) ) -> ( ( X C_ Z /\ Y C_ Z ) -> ( X .+ Y ) C_ Z ) ) |
| 15 | 1 3 | paddssw2 | |- ( ( K e. B /\ ( X C_ A /\ Y C_ A /\ Z C_ A ) ) -> ( ( X .+ Y ) C_ Z -> ( X C_ Z /\ Y C_ Z ) ) ) |
| 16 | 4 5 6 8 15 | syl13anc | |- ( ( K e. B /\ ( X C_ A /\ Y C_ A /\ Z e. S ) ) -> ( ( X .+ Y ) C_ Z -> ( X C_ Z /\ Y C_ Z ) ) ) |
| 17 | 14 16 | impbid | |- ( ( K e. B /\ ( X C_ A /\ Y C_ A /\ Z e. S ) ) -> ( ( X C_ Z /\ Y C_ Z ) <-> ( X .+ Y ) C_ Z ) ) |