This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Projective subspace sum operation. (Contributed by NM, 29-Dec-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | paddfval.l | |- .<_ = ( le ` K ) |
|
| paddfval.j | |- .\/ = ( join ` K ) |
||
| paddfval.a | |- A = ( Atoms ` K ) |
||
| paddfval.p | |- .+ = ( +P ` K ) |
||
| Assertion | paddfval | |- ( K e. B -> .+ = ( m e. ~P A , n e. ~P A |-> ( ( m u. n ) u. { p e. A | E. q e. m E. r e. n p .<_ ( q .\/ r ) } ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | paddfval.l | |- .<_ = ( le ` K ) |
|
| 2 | paddfval.j | |- .\/ = ( join ` K ) |
|
| 3 | paddfval.a | |- A = ( Atoms ` K ) |
|
| 4 | paddfval.p | |- .+ = ( +P ` K ) |
|
| 5 | elex | |- ( K e. B -> K e. _V ) |
|
| 6 | fveq2 | |- ( h = K -> ( Atoms ` h ) = ( Atoms ` K ) ) |
|
| 7 | 6 3 | eqtr4di | |- ( h = K -> ( Atoms ` h ) = A ) |
| 8 | 7 | pweqd | |- ( h = K -> ~P ( Atoms ` h ) = ~P A ) |
| 9 | eqidd | |- ( h = K -> p = p ) |
|
| 10 | fveq2 | |- ( h = K -> ( le ` h ) = ( le ` K ) ) |
|
| 11 | 10 1 | eqtr4di | |- ( h = K -> ( le ` h ) = .<_ ) |
| 12 | fveq2 | |- ( h = K -> ( join ` h ) = ( join ` K ) ) |
|
| 13 | 12 2 | eqtr4di | |- ( h = K -> ( join ` h ) = .\/ ) |
| 14 | 13 | oveqd | |- ( h = K -> ( q ( join ` h ) r ) = ( q .\/ r ) ) |
| 15 | 9 11 14 | breq123d | |- ( h = K -> ( p ( le ` h ) ( q ( join ` h ) r ) <-> p .<_ ( q .\/ r ) ) ) |
| 16 | 15 | 2rexbidv | |- ( h = K -> ( E. q e. m E. r e. n p ( le ` h ) ( q ( join ` h ) r ) <-> E. q e. m E. r e. n p .<_ ( q .\/ r ) ) ) |
| 17 | 7 16 | rabeqbidv | |- ( h = K -> { p e. ( Atoms ` h ) | E. q e. m E. r e. n p ( le ` h ) ( q ( join ` h ) r ) } = { p e. A | E. q e. m E. r e. n p .<_ ( q .\/ r ) } ) |
| 18 | 17 | uneq2d | |- ( h = K -> ( ( m u. n ) u. { p e. ( Atoms ` h ) | E. q e. m E. r e. n p ( le ` h ) ( q ( join ` h ) r ) } ) = ( ( m u. n ) u. { p e. A | E. q e. m E. r e. n p .<_ ( q .\/ r ) } ) ) |
| 19 | 8 8 18 | mpoeq123dv | |- ( h = K -> ( m e. ~P ( Atoms ` h ) , n e. ~P ( Atoms ` h ) |-> ( ( m u. n ) u. { p e. ( Atoms ` h ) | E. q e. m E. r e. n p ( le ` h ) ( q ( join ` h ) r ) } ) ) = ( m e. ~P A , n e. ~P A |-> ( ( m u. n ) u. { p e. A | E. q e. m E. r e. n p .<_ ( q .\/ r ) } ) ) ) |
| 20 | df-padd | |- +P = ( h e. _V |-> ( m e. ~P ( Atoms ` h ) , n e. ~P ( Atoms ` h ) |-> ( ( m u. n ) u. { p e. ( Atoms ` h ) | E. q e. m E. r e. n p ( le ` h ) ( q ( join ` h ) r ) } ) ) ) |
|
| 21 | 3 | fvexi | |- A e. _V |
| 22 | 21 | pwex | |- ~P A e. _V |
| 23 | 22 22 | mpoex | |- ( m e. ~P A , n e. ~P A |-> ( ( m u. n ) u. { p e. A | E. q e. m E. r e. n p .<_ ( q .\/ r ) } ) ) e. _V |
| 24 | 19 20 23 | fvmpt | |- ( K e. _V -> ( +P ` K ) = ( m e. ~P A , n e. ~P A |-> ( ( m u. n ) u. { p e. A | E. q e. m E. r e. n p .<_ ( q .\/ r ) } ) ) ) |
| 25 | 4 24 | eqtrid | |- ( K e. _V -> .+ = ( m e. ~P A , n e. ~P A |-> ( ( m u. n ) u. { p e. A | E. q e. m E. r e. n p .<_ ( q .\/ r ) } ) ) ) |
| 26 | 5 25 | syl | |- ( K e. B -> .+ = ( m e. ~P A , n e. ~P A |-> ( ( m u. n ) u. { p e. A | E. q e. m E. r e. n p .<_ ( q .\/ r ) } ) ) ) |