This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for paddass . (Contributed by NM, 8-Jan-2012)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | paddasslem.l | ⊢ ≤ = ( le ‘ 𝐾 ) | |
| paddasslem.j | ⊢ ∨ = ( join ‘ 𝐾 ) | ||
| paddasslem.a | ⊢ 𝐴 = ( Atoms ‘ 𝐾 ) | ||
| Assertion | paddasslem2 | ⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑟 ∈ 𝐴 ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) ∧ ( ¬ 𝑟 ≤ ( 𝑥 ∨ 𝑦 ) ∧ 𝑟 ≤ ( 𝑦 ∨ 𝑧 ) ) ) → 𝑧 ≤ ( 𝑟 ∨ 𝑦 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | paddasslem.l | ⊢ ≤ = ( le ‘ 𝐾 ) | |
| 2 | paddasslem.j | ⊢ ∨ = ( join ‘ 𝐾 ) | |
| 3 | paddasslem.a | ⊢ 𝐴 = ( Atoms ‘ 𝐾 ) | |
| 4 | simp1l | ⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑟 ∈ 𝐴 ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) ∧ ( ¬ 𝑟 ≤ ( 𝑥 ∨ 𝑦 ) ∧ 𝑟 ≤ ( 𝑦 ∨ 𝑧 ) ) ) → 𝐾 ∈ HL ) | |
| 5 | simp1r | ⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑟 ∈ 𝐴 ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) ∧ ( ¬ 𝑟 ≤ ( 𝑥 ∨ 𝑦 ) ∧ 𝑟 ≤ ( 𝑦 ∨ 𝑧 ) ) ) → 𝑟 ∈ 𝐴 ) | |
| 6 | simp23 | ⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑟 ∈ 𝐴 ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) ∧ ( ¬ 𝑟 ≤ ( 𝑥 ∨ 𝑦 ) ∧ 𝑟 ≤ ( 𝑦 ∨ 𝑧 ) ) ) → 𝑧 ∈ 𝐴 ) | |
| 7 | simp22 | ⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑟 ∈ 𝐴 ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) ∧ ( ¬ 𝑟 ≤ ( 𝑥 ∨ 𝑦 ) ∧ 𝑟 ≤ ( 𝑦 ∨ 𝑧 ) ) ) → 𝑦 ∈ 𝐴 ) | |
| 8 | 5 6 7 | 3jca | ⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑟 ∈ 𝐴 ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) ∧ ( ¬ 𝑟 ≤ ( 𝑥 ∨ 𝑦 ) ∧ 𝑟 ≤ ( 𝑦 ∨ 𝑧 ) ) ) → ( 𝑟 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) |
| 9 | simp21 | ⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑟 ∈ 𝐴 ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) ∧ ( ¬ 𝑟 ≤ ( 𝑥 ∨ 𝑦 ) ∧ 𝑟 ≤ ( 𝑦 ∨ 𝑧 ) ) ) → 𝑥 ∈ 𝐴 ) | |
| 10 | simp3l | ⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑟 ∈ 𝐴 ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) ∧ ( ¬ 𝑟 ≤ ( 𝑥 ∨ 𝑦 ) ∧ 𝑟 ≤ ( 𝑦 ∨ 𝑧 ) ) ) → ¬ 𝑟 ≤ ( 𝑥 ∨ 𝑦 ) ) | |
| 11 | 1 2 3 | atnlej2 | ⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑟 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ∧ ¬ 𝑟 ≤ ( 𝑥 ∨ 𝑦 ) ) → 𝑟 ≠ 𝑦 ) |
| 12 | 4 5 9 7 10 11 | syl131anc | ⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑟 ∈ 𝐴 ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) ∧ ( ¬ 𝑟 ≤ ( 𝑥 ∨ 𝑦 ) ∧ 𝑟 ≤ ( 𝑦 ∨ 𝑧 ) ) ) → 𝑟 ≠ 𝑦 ) |
| 13 | 4 8 12 | 3jca | ⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑟 ∈ 𝐴 ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) ∧ ( ¬ 𝑟 ≤ ( 𝑥 ∨ 𝑦 ) ∧ 𝑟 ≤ ( 𝑦 ∨ 𝑧 ) ) ) → ( 𝐾 ∈ HL ∧ ( 𝑟 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ∧ 𝑟 ≠ 𝑦 ) ) |
| 14 | simp3r | ⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑟 ∈ 𝐴 ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) ∧ ( ¬ 𝑟 ≤ ( 𝑥 ∨ 𝑦 ) ∧ 𝑟 ≤ ( 𝑦 ∨ 𝑧 ) ) ) → 𝑟 ≤ ( 𝑦 ∨ 𝑧 ) ) | |
| 15 | 1 2 3 | hlatexch1 | ⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑟 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ∧ 𝑟 ≠ 𝑦 ) → ( 𝑟 ≤ ( 𝑦 ∨ 𝑧 ) → 𝑧 ≤ ( 𝑦 ∨ 𝑟 ) ) ) |
| 16 | 13 14 15 | sylc | ⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑟 ∈ 𝐴 ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) ∧ ( ¬ 𝑟 ≤ ( 𝑥 ∨ 𝑦 ) ∧ 𝑟 ≤ ( 𝑦 ∨ 𝑧 ) ) ) → 𝑧 ≤ ( 𝑦 ∨ 𝑟 ) ) |
| 17 | 4 | hllatd | ⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑟 ∈ 𝐴 ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) ∧ ( ¬ 𝑟 ≤ ( 𝑥 ∨ 𝑦 ) ∧ 𝑟 ≤ ( 𝑦 ∨ 𝑧 ) ) ) → 𝐾 ∈ Lat ) |
| 18 | eqid | ⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) | |
| 19 | 18 3 | atbase | ⊢ ( 𝑟 ∈ 𝐴 → 𝑟 ∈ ( Base ‘ 𝐾 ) ) |
| 20 | 5 19 | syl | ⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑟 ∈ 𝐴 ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) ∧ ( ¬ 𝑟 ≤ ( 𝑥 ∨ 𝑦 ) ∧ 𝑟 ≤ ( 𝑦 ∨ 𝑧 ) ) ) → 𝑟 ∈ ( Base ‘ 𝐾 ) ) |
| 21 | 18 3 | atbase | ⊢ ( 𝑦 ∈ 𝐴 → 𝑦 ∈ ( Base ‘ 𝐾 ) ) |
| 22 | 7 21 | syl | ⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑟 ∈ 𝐴 ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) ∧ ( ¬ 𝑟 ≤ ( 𝑥 ∨ 𝑦 ) ∧ 𝑟 ≤ ( 𝑦 ∨ 𝑧 ) ) ) → 𝑦 ∈ ( Base ‘ 𝐾 ) ) |
| 23 | 18 2 | latjcom | ⊢ ( ( 𝐾 ∈ Lat ∧ 𝑟 ∈ ( Base ‘ 𝐾 ) ∧ 𝑦 ∈ ( Base ‘ 𝐾 ) ) → ( 𝑟 ∨ 𝑦 ) = ( 𝑦 ∨ 𝑟 ) ) |
| 24 | 17 20 22 23 | syl3anc | ⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑟 ∈ 𝐴 ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) ∧ ( ¬ 𝑟 ≤ ( 𝑥 ∨ 𝑦 ) ∧ 𝑟 ≤ ( 𝑦 ∨ 𝑧 ) ) ) → ( 𝑟 ∨ 𝑦 ) = ( 𝑦 ∨ 𝑟 ) ) |
| 25 | 16 24 | breqtrrd | ⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑟 ∈ 𝐴 ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) ∧ ( ¬ 𝑟 ≤ ( 𝑥 ∨ 𝑦 ) ∧ 𝑟 ≤ ( 𝑦 ∨ 𝑧 ) ) ) → 𝑧 ≤ ( 𝑟 ∨ 𝑦 ) ) |