This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If an atom is not less than or equal to the join of two others, it is not equal to either. (This also holds for non-atoms, but in this form it is convenient.) (Contributed by NM, 8-Jan-2012)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | atnlej.l | ⊢ ≤ = ( le ‘ 𝐾 ) | |
| atnlej.j | ⊢ ∨ = ( join ‘ 𝐾 ) | ||
| atnlej.a | ⊢ 𝐴 = ( Atoms ‘ 𝐾 ) | ||
| Assertion | atnlej2 | ⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ¬ 𝑃 ≤ ( 𝑄 ∨ 𝑅 ) ) → 𝑃 ≠ 𝑅 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | atnlej.l | ⊢ ≤ = ( le ‘ 𝐾 ) | |
| 2 | atnlej.j | ⊢ ∨ = ( join ‘ 𝐾 ) | |
| 3 | atnlej.a | ⊢ 𝐴 = ( Atoms ‘ 𝐾 ) | |
| 4 | hllat | ⊢ ( 𝐾 ∈ HL → 𝐾 ∈ Lat ) | |
| 5 | 4 | 3ad2ant1 | ⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ¬ 𝑃 ≤ ( 𝑄 ∨ 𝑅 ) ) → 𝐾 ∈ Lat ) |
| 6 | simp21 | ⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ¬ 𝑃 ≤ ( 𝑄 ∨ 𝑅 ) ) → 𝑃 ∈ 𝐴 ) | |
| 7 | eqid | ⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) | |
| 8 | 7 3 | atbase | ⊢ ( 𝑃 ∈ 𝐴 → 𝑃 ∈ ( Base ‘ 𝐾 ) ) |
| 9 | 6 8 | syl | ⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ¬ 𝑃 ≤ ( 𝑄 ∨ 𝑅 ) ) → 𝑃 ∈ ( Base ‘ 𝐾 ) ) |
| 10 | simp22 | ⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ¬ 𝑃 ≤ ( 𝑄 ∨ 𝑅 ) ) → 𝑄 ∈ 𝐴 ) | |
| 11 | 7 3 | atbase | ⊢ ( 𝑄 ∈ 𝐴 → 𝑄 ∈ ( Base ‘ 𝐾 ) ) |
| 12 | 10 11 | syl | ⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ¬ 𝑃 ≤ ( 𝑄 ∨ 𝑅 ) ) → 𝑄 ∈ ( Base ‘ 𝐾 ) ) |
| 13 | simp23 | ⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ¬ 𝑃 ≤ ( 𝑄 ∨ 𝑅 ) ) → 𝑅 ∈ 𝐴 ) | |
| 14 | 7 3 | atbase | ⊢ ( 𝑅 ∈ 𝐴 → 𝑅 ∈ ( Base ‘ 𝐾 ) ) |
| 15 | 13 14 | syl | ⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ¬ 𝑃 ≤ ( 𝑄 ∨ 𝑅 ) ) → 𝑅 ∈ ( Base ‘ 𝐾 ) ) |
| 16 | simp3 | ⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ¬ 𝑃 ≤ ( 𝑄 ∨ 𝑅 ) ) → ¬ 𝑃 ≤ ( 𝑄 ∨ 𝑅 ) ) | |
| 17 | 7 1 2 | latnlej1r | ⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑃 ∈ ( Base ‘ 𝐾 ) ∧ 𝑄 ∈ ( Base ‘ 𝐾 ) ∧ 𝑅 ∈ ( Base ‘ 𝐾 ) ) ∧ ¬ 𝑃 ≤ ( 𝑄 ∨ 𝑅 ) ) → 𝑃 ≠ 𝑅 ) |
| 18 | 5 9 12 15 16 17 | syl131anc | ⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ) ∧ ¬ 𝑃 ≤ ( 𝑄 ∨ 𝑅 ) ) → 𝑃 ≠ 𝑅 ) |