This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If the value of a function which is the result of an operation defined by the maps-to notation is not empty, the operands and the argument of the function must be sets. (Contributed by AV, 16-May-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ovmpt3rab1.o | |- O = ( x e. _V , y e. _V |-> ( z e. M |-> { a e. N | ph } ) ) |
|
| ovmpt3rab1.m | |- ( ( x = X /\ y = Y ) -> M = K ) |
||
| ovmpt3rab1.n | |- ( ( x = X /\ y = Y ) -> N = L ) |
||
| Assertion | ovmpt3rabdm | |- ( ( ( X e. V /\ Y e. W /\ K e. U ) /\ L e. T ) -> dom ( X O Y ) = K ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ovmpt3rab1.o | |- O = ( x e. _V , y e. _V |-> ( z e. M |-> { a e. N | ph } ) ) |
|
| 2 | ovmpt3rab1.m | |- ( ( x = X /\ y = Y ) -> M = K ) |
|
| 3 | ovmpt3rab1.n | |- ( ( x = X /\ y = Y ) -> N = L ) |
|
| 4 | sbceq1a | |- ( y = Y -> ( ph <-> [. Y / y ]. ph ) ) |
|
| 5 | sbceq1a | |- ( x = X -> ( [. Y / y ]. ph <-> [. X / x ]. [. Y / y ]. ph ) ) |
|
| 6 | 4 5 | sylan9bbr | |- ( ( x = X /\ y = Y ) -> ( ph <-> [. X / x ]. [. Y / y ]. ph ) ) |
| 7 | nfsbc1v | |- F/ x [. X / x ]. [. Y / y ]. ph |
|
| 8 | nfcv | |- F/_ y X |
|
| 9 | nfsbc1v | |- F/ y [. Y / y ]. ph |
|
| 10 | 8 9 | nfsbcw | |- F/ y [. X / x ]. [. Y / y ]. ph |
| 11 | 1 2 3 6 7 10 | ovmpt3rab1 | |- ( ( X e. V /\ Y e. W /\ K e. U ) -> ( X O Y ) = ( z e. K |-> { a e. L | [. X / x ]. [. Y / y ]. ph } ) ) |
| 12 | 11 | adantr | |- ( ( ( X e. V /\ Y e. W /\ K e. U ) /\ L e. T ) -> ( X O Y ) = ( z e. K |-> { a e. L | [. X / x ]. [. Y / y ]. ph } ) ) |
| 13 | 12 | dmeqd | |- ( ( ( X e. V /\ Y e. W /\ K e. U ) /\ L e. T ) -> dom ( X O Y ) = dom ( z e. K |-> { a e. L | [. X / x ]. [. Y / y ]. ph } ) ) |
| 14 | rabexg | |- ( L e. T -> { a e. L | [. X / x ]. [. Y / y ]. ph } e. _V ) |
|
| 15 | 14 | adantl | |- ( ( ( X e. V /\ Y e. W /\ K e. U ) /\ L e. T ) -> { a e. L | [. X / x ]. [. Y / y ]. ph } e. _V ) |
| 16 | 15 | ralrimivw | |- ( ( ( X e. V /\ Y e. W /\ K e. U ) /\ L e. T ) -> A. z e. K { a e. L | [. X / x ]. [. Y / y ]. ph } e. _V ) |
| 17 | dmmptg | |- ( A. z e. K { a e. L | [. X / x ]. [. Y / y ]. ph } e. _V -> dom ( z e. K |-> { a e. L | [. X / x ]. [. Y / y ]. ph } ) = K ) |
|
| 18 | 16 17 | syl | |- ( ( ( X e. V /\ Y e. W /\ K e. U ) /\ L e. T ) -> dom ( z e. K |-> { a e. L | [. X / x ]. [. Y / y ]. ph } ) = K ) |
| 19 | 13 18 | eqtrd | |- ( ( ( X e. V /\ Y e. W /\ K e. U ) /\ L e. T ) -> dom ( X O Y ) = K ) |