This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The value of an operation class abstraction. A version of ovmpog using bound-variable hypotheses. (Contributed by NM, 17-Aug-2006) (Revised by Mario Carneiro, 19-Dec-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ov2gf.a | |- F/_ x A |
|
| ov2gf.c | |- F/_ y A |
||
| ov2gf.d | |- F/_ y B |
||
| ov2gf.1 | |- F/_ x G |
||
| ov2gf.2 | |- F/_ y S |
||
| ov2gf.3 | |- ( x = A -> R = G ) |
||
| ov2gf.4 | |- ( y = B -> G = S ) |
||
| ov2gf.5 | |- F = ( x e. C , y e. D |-> R ) |
||
| Assertion | ov2gf | |- ( ( A e. C /\ B e. D /\ S e. H ) -> ( A F B ) = S ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ov2gf.a | |- F/_ x A |
|
| 2 | ov2gf.c | |- F/_ y A |
|
| 3 | ov2gf.d | |- F/_ y B |
|
| 4 | ov2gf.1 | |- F/_ x G |
|
| 5 | ov2gf.2 | |- F/_ y S |
|
| 6 | ov2gf.3 | |- ( x = A -> R = G ) |
|
| 7 | ov2gf.4 | |- ( y = B -> G = S ) |
|
| 8 | ov2gf.5 | |- F = ( x e. C , y e. D |-> R ) |
|
| 9 | elex | |- ( S e. H -> S e. _V ) |
|
| 10 | 4 | nfel1 | |- F/ x G e. _V |
| 11 | nfmpo1 | |- F/_ x ( x e. C , y e. D |-> R ) |
|
| 12 | 8 11 | nfcxfr | |- F/_ x F |
| 13 | nfcv | |- F/_ x y |
|
| 14 | 1 12 13 | nfov | |- F/_ x ( A F y ) |
| 15 | 14 4 | nfeq | |- F/ x ( A F y ) = G |
| 16 | 10 15 | nfim | |- F/ x ( G e. _V -> ( A F y ) = G ) |
| 17 | 5 | nfel1 | |- F/ y S e. _V |
| 18 | nfmpo2 | |- F/_ y ( x e. C , y e. D |-> R ) |
|
| 19 | 8 18 | nfcxfr | |- F/_ y F |
| 20 | 2 19 3 | nfov | |- F/_ y ( A F B ) |
| 21 | 20 5 | nfeq | |- F/ y ( A F B ) = S |
| 22 | 17 21 | nfim | |- F/ y ( S e. _V -> ( A F B ) = S ) |
| 23 | 6 | eleq1d | |- ( x = A -> ( R e. _V <-> G e. _V ) ) |
| 24 | oveq1 | |- ( x = A -> ( x F y ) = ( A F y ) ) |
|
| 25 | 24 6 | eqeq12d | |- ( x = A -> ( ( x F y ) = R <-> ( A F y ) = G ) ) |
| 26 | 23 25 | imbi12d | |- ( x = A -> ( ( R e. _V -> ( x F y ) = R ) <-> ( G e. _V -> ( A F y ) = G ) ) ) |
| 27 | 7 | eleq1d | |- ( y = B -> ( G e. _V <-> S e. _V ) ) |
| 28 | oveq2 | |- ( y = B -> ( A F y ) = ( A F B ) ) |
|
| 29 | 28 7 | eqeq12d | |- ( y = B -> ( ( A F y ) = G <-> ( A F B ) = S ) ) |
| 30 | 27 29 | imbi12d | |- ( y = B -> ( ( G e. _V -> ( A F y ) = G ) <-> ( S e. _V -> ( A F B ) = S ) ) ) |
| 31 | 8 | ovmpt4g | |- ( ( x e. C /\ y e. D /\ R e. _V ) -> ( x F y ) = R ) |
| 32 | 31 | 3expia | |- ( ( x e. C /\ y e. D ) -> ( R e. _V -> ( x F y ) = R ) ) |
| 33 | 1 2 3 16 22 26 30 32 | vtocl2gaf | |- ( ( A e. C /\ B e. D ) -> ( S e. _V -> ( A F B ) = S ) ) |
| 34 | 9 33 | syl5 | |- ( ( A e. C /\ B e. D ) -> ( S e. H -> ( A F B ) = S ) ) |
| 35 | 34 | 3impia | |- ( ( A e. C /\ B e. D /\ S e. H ) -> ( A F B ) = S ) |