This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: For any set-like well-ordered class, if the order isomorphism exists (is a set), then it maps some ordinal onto A isomorphically. Otherwise, F is a proper class, which implies that either ran F C_ A is a proper class or dom F = On . This weak version of ordtype does not require the Axiom of Replacement. (Contributed by Mario Carneiro, 25-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | oicl.1 | ⊢ 𝐹 = OrdIso ( 𝑅 , 𝐴 ) | |
| Assertion | ordtype2 | ⊢ ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ 𝐹 ∈ V ) → 𝐹 Isom E , 𝑅 ( dom 𝐹 , 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oicl.1 | ⊢ 𝐹 = OrdIso ( 𝑅 , 𝐴 ) | |
| 2 | eqid | ⊢ recs ( ( ℎ ∈ V ↦ ( ℩ 𝑣 ∈ { 𝑤 ∈ 𝐴 ∣ ∀ 𝑗 ∈ ran ℎ 𝑗 𝑅 𝑤 } ∀ 𝑢 ∈ { 𝑤 ∈ 𝐴 ∣ ∀ 𝑗 ∈ ran ℎ 𝑗 𝑅 𝑤 } ¬ 𝑢 𝑅 𝑣 ) ) ) = recs ( ( ℎ ∈ V ↦ ( ℩ 𝑣 ∈ { 𝑤 ∈ 𝐴 ∣ ∀ 𝑗 ∈ ran ℎ 𝑗 𝑅 𝑤 } ∀ 𝑢 ∈ { 𝑤 ∈ 𝐴 ∣ ∀ 𝑗 ∈ ran ℎ 𝑗 𝑅 𝑤 } ¬ 𝑢 𝑅 𝑣 ) ) ) | |
| 3 | eqid | ⊢ { 𝑤 ∈ 𝐴 ∣ ∀ 𝑗 ∈ ran ℎ 𝑗 𝑅 𝑤 } = { 𝑤 ∈ 𝐴 ∣ ∀ 𝑗 ∈ ran ℎ 𝑗 𝑅 𝑤 } | |
| 4 | eqid | ⊢ ( ℎ ∈ V ↦ ( ℩ 𝑣 ∈ { 𝑤 ∈ 𝐴 ∣ ∀ 𝑗 ∈ ran ℎ 𝑗 𝑅 𝑤 } ∀ 𝑢 ∈ { 𝑤 ∈ 𝐴 ∣ ∀ 𝑗 ∈ ran ℎ 𝑗 𝑅 𝑤 } ¬ 𝑢 𝑅 𝑣 ) ) = ( ℎ ∈ V ↦ ( ℩ 𝑣 ∈ { 𝑤 ∈ 𝐴 ∣ ∀ 𝑗 ∈ ran ℎ 𝑗 𝑅 𝑤 } ∀ 𝑢 ∈ { 𝑤 ∈ 𝐴 ∣ ∀ 𝑗 ∈ ran ℎ 𝑗 𝑅 𝑤 } ¬ 𝑢 𝑅 𝑣 ) ) | |
| 5 | 2 3 4 | ordtypecbv | ⊢ recs ( ( 𝑓 ∈ V ↦ ( ℩ 𝑠 ∈ { 𝑦 ∈ 𝐴 ∣ ∀ 𝑖 ∈ ran 𝑓 𝑖 𝑅 𝑦 } ∀ 𝑟 ∈ { 𝑦 ∈ 𝐴 ∣ ∀ 𝑖 ∈ ran 𝑓 𝑖 𝑅 𝑦 } ¬ 𝑟 𝑅 𝑠 ) ) ) = recs ( ( ℎ ∈ V ↦ ( ℩ 𝑣 ∈ { 𝑤 ∈ 𝐴 ∣ ∀ 𝑗 ∈ ran ℎ 𝑗 𝑅 𝑤 } ∀ 𝑢 ∈ { 𝑤 ∈ 𝐴 ∣ ∀ 𝑗 ∈ ran ℎ 𝑗 𝑅 𝑤 } ¬ 𝑢 𝑅 𝑣 ) ) ) |
| 6 | eqid | ⊢ { 𝑥 ∈ On ∣ ∃ 𝑡 ∈ 𝐴 ∀ 𝑧 ∈ ( recs ( ( 𝑓 ∈ V ↦ ( ℩ 𝑠 ∈ { 𝑦 ∈ 𝐴 ∣ ∀ 𝑖 ∈ ran 𝑓 𝑖 𝑅 𝑦 } ∀ 𝑟 ∈ { 𝑦 ∈ 𝐴 ∣ ∀ 𝑖 ∈ ran 𝑓 𝑖 𝑅 𝑦 } ¬ 𝑟 𝑅 𝑠 ) ) ) “ 𝑥 ) 𝑧 𝑅 𝑡 } = { 𝑥 ∈ On ∣ ∃ 𝑡 ∈ 𝐴 ∀ 𝑧 ∈ ( recs ( ( 𝑓 ∈ V ↦ ( ℩ 𝑠 ∈ { 𝑦 ∈ 𝐴 ∣ ∀ 𝑖 ∈ ran 𝑓 𝑖 𝑅 𝑦 } ∀ 𝑟 ∈ { 𝑦 ∈ 𝐴 ∣ ∀ 𝑖 ∈ ran 𝑓 𝑖 𝑅 𝑦 } ¬ 𝑟 𝑅 𝑠 ) ) ) “ 𝑥 ) 𝑧 𝑅 𝑡 } | |
| 7 | simp1 | ⊢ ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ 𝐹 ∈ V ) → 𝑅 We 𝐴 ) | |
| 8 | simp2 | ⊢ ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ 𝐹 ∈ V ) → 𝑅 Se 𝐴 ) | |
| 9 | simp3 | ⊢ ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ 𝐹 ∈ V ) → 𝐹 ∈ V ) | |
| 10 | 5 3 4 6 1 7 8 9 | ordtypelem9 | ⊢ ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ 𝐹 ∈ V ) → 𝐹 Isom E , 𝑅 ( dom 𝐹 , 𝐴 ) ) |