This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define the order topology, given an order <_ , written as r below. A closed subbasis for the order topology is given by the closed rays [ y , +oo ) = { z e. X | y <_ z } and ( -oo , y ] = { z e. X | z <_ y } , along with ( -oo , +oo ) = X itself. (Contributed by Mario Carneiro, 3-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-ordt | ⊢ ordTop = ( 𝑟 ∈ V ↦ ( topGen ‘ ( fi ‘ ( { dom 𝑟 } ∪ ran ( ( 𝑥 ∈ dom 𝑟 ↦ { 𝑦 ∈ dom 𝑟 ∣ ¬ 𝑦 𝑟 𝑥 } ) ∪ ( 𝑥 ∈ dom 𝑟 ↦ { 𝑦 ∈ dom 𝑟 ∣ ¬ 𝑥 𝑟 𝑦 } ) ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cordt | ⊢ ordTop | |
| 1 | vr | ⊢ 𝑟 | |
| 2 | cvv | ⊢ V | |
| 3 | ctg | ⊢ topGen | |
| 4 | cfi | ⊢ fi | |
| 5 | 1 | cv | ⊢ 𝑟 |
| 6 | 5 | cdm | ⊢ dom 𝑟 |
| 7 | 6 | csn | ⊢ { dom 𝑟 } |
| 8 | vx | ⊢ 𝑥 | |
| 9 | vy | ⊢ 𝑦 | |
| 10 | 9 | cv | ⊢ 𝑦 |
| 11 | 8 | cv | ⊢ 𝑥 |
| 12 | 10 11 5 | wbr | ⊢ 𝑦 𝑟 𝑥 |
| 13 | 12 | wn | ⊢ ¬ 𝑦 𝑟 𝑥 |
| 14 | 13 9 6 | crab | ⊢ { 𝑦 ∈ dom 𝑟 ∣ ¬ 𝑦 𝑟 𝑥 } |
| 15 | 8 6 14 | cmpt | ⊢ ( 𝑥 ∈ dom 𝑟 ↦ { 𝑦 ∈ dom 𝑟 ∣ ¬ 𝑦 𝑟 𝑥 } ) |
| 16 | 11 10 5 | wbr | ⊢ 𝑥 𝑟 𝑦 |
| 17 | 16 | wn | ⊢ ¬ 𝑥 𝑟 𝑦 |
| 18 | 17 9 6 | crab | ⊢ { 𝑦 ∈ dom 𝑟 ∣ ¬ 𝑥 𝑟 𝑦 } |
| 19 | 8 6 18 | cmpt | ⊢ ( 𝑥 ∈ dom 𝑟 ↦ { 𝑦 ∈ dom 𝑟 ∣ ¬ 𝑥 𝑟 𝑦 } ) |
| 20 | 15 19 | cun | ⊢ ( ( 𝑥 ∈ dom 𝑟 ↦ { 𝑦 ∈ dom 𝑟 ∣ ¬ 𝑦 𝑟 𝑥 } ) ∪ ( 𝑥 ∈ dom 𝑟 ↦ { 𝑦 ∈ dom 𝑟 ∣ ¬ 𝑥 𝑟 𝑦 } ) ) |
| 21 | 20 | crn | ⊢ ran ( ( 𝑥 ∈ dom 𝑟 ↦ { 𝑦 ∈ dom 𝑟 ∣ ¬ 𝑦 𝑟 𝑥 } ) ∪ ( 𝑥 ∈ dom 𝑟 ↦ { 𝑦 ∈ dom 𝑟 ∣ ¬ 𝑥 𝑟 𝑦 } ) ) |
| 22 | 7 21 | cun | ⊢ ( { dom 𝑟 } ∪ ran ( ( 𝑥 ∈ dom 𝑟 ↦ { 𝑦 ∈ dom 𝑟 ∣ ¬ 𝑦 𝑟 𝑥 } ) ∪ ( 𝑥 ∈ dom 𝑟 ↦ { 𝑦 ∈ dom 𝑟 ∣ ¬ 𝑥 𝑟 𝑦 } ) ) ) |
| 23 | 22 4 | cfv | ⊢ ( fi ‘ ( { dom 𝑟 } ∪ ran ( ( 𝑥 ∈ dom 𝑟 ↦ { 𝑦 ∈ dom 𝑟 ∣ ¬ 𝑦 𝑟 𝑥 } ) ∪ ( 𝑥 ∈ dom 𝑟 ↦ { 𝑦 ∈ dom 𝑟 ∣ ¬ 𝑥 𝑟 𝑦 } ) ) ) ) |
| 24 | 23 3 | cfv | ⊢ ( topGen ‘ ( fi ‘ ( { dom 𝑟 } ∪ ran ( ( 𝑥 ∈ dom 𝑟 ↦ { 𝑦 ∈ dom 𝑟 ∣ ¬ 𝑦 𝑟 𝑥 } ) ∪ ( 𝑥 ∈ dom 𝑟 ↦ { 𝑦 ∈ dom 𝑟 ∣ ¬ 𝑥 𝑟 𝑦 } ) ) ) ) ) |
| 25 | 1 2 24 | cmpt | ⊢ ( 𝑟 ∈ V ↦ ( topGen ‘ ( fi ‘ ( { dom 𝑟 } ∪ ran ( ( 𝑥 ∈ dom 𝑟 ↦ { 𝑦 ∈ dom 𝑟 ∣ ¬ 𝑦 𝑟 𝑥 } ) ∪ ( 𝑥 ∈ dom 𝑟 ↦ { 𝑦 ∈ dom 𝑟 ∣ ¬ 𝑥 𝑟 𝑦 } ) ) ) ) ) ) |
| 26 | 0 25 | wceq | ⊢ ordTop = ( 𝑟 ∈ V ↦ ( topGen ‘ ( fi ‘ ( { dom 𝑟 } ∪ ran ( ( 𝑥 ∈ dom 𝑟 ↦ { 𝑦 ∈ dom 𝑟 ∣ ¬ 𝑦 𝑟 𝑥 } ) ∪ ( 𝑥 ∈ dom 𝑟 ↦ { 𝑦 ∈ dom 𝑟 ∣ ¬ 𝑥 𝑟 𝑦 } ) ) ) ) ) ) |