This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The collection of ordinals in the power class of an ordinal is its successor. (Contributed by NM, 30-Jan-2005)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ordpwsuc | |- ( Ord A -> ( ~P A i^i On ) = suc A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elin | |- ( x e. ( ~P A i^i On ) <-> ( x e. ~P A /\ x e. On ) ) |
|
| 2 | velpw | |- ( x e. ~P A <-> x C_ A ) |
|
| 3 | 2 | anbi2ci | |- ( ( x e. ~P A /\ x e. On ) <-> ( x e. On /\ x C_ A ) ) |
| 4 | 1 3 | bitri | |- ( x e. ( ~P A i^i On ) <-> ( x e. On /\ x C_ A ) ) |
| 5 | ordsssuc | |- ( ( x e. On /\ Ord A ) -> ( x C_ A <-> x e. suc A ) ) |
|
| 6 | 5 | expcom | |- ( Ord A -> ( x e. On -> ( x C_ A <-> x e. suc A ) ) ) |
| 7 | 6 | pm5.32d | |- ( Ord A -> ( ( x e. On /\ x C_ A ) <-> ( x e. On /\ x e. suc A ) ) ) |
| 8 | simpr | |- ( ( x e. On /\ x e. suc A ) -> x e. suc A ) |
|
| 9 | ordsuc | |- ( Ord A <-> Ord suc A ) |
|
| 10 | ordelon | |- ( ( Ord suc A /\ x e. suc A ) -> x e. On ) |
|
| 11 | 10 | ex | |- ( Ord suc A -> ( x e. suc A -> x e. On ) ) |
| 12 | 9 11 | sylbi | |- ( Ord A -> ( x e. suc A -> x e. On ) ) |
| 13 | 12 | ancrd | |- ( Ord A -> ( x e. suc A -> ( x e. On /\ x e. suc A ) ) ) |
| 14 | 8 13 | impbid2 | |- ( Ord A -> ( ( x e. On /\ x e. suc A ) <-> x e. suc A ) ) |
| 15 | 7 14 | bitrd | |- ( Ord A -> ( ( x e. On /\ x C_ A ) <-> x e. suc A ) ) |
| 16 | 4 15 | bitrid | |- ( Ord A -> ( x e. ( ~P A i^i On ) <-> x e. suc A ) ) |
| 17 | 16 | eqrdv | |- ( Ord A -> ( ~P A i^i On ) = suc A ) |