This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An ordinal that is not 0, 1, or 2 contains 2. (Contributed by BTernaryTau, 1-Dec-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ord2eln012 | ⊢ ( Ord 𝐴 → ( 2o ∈ 𝐴 ↔ ( 𝐴 ≠ ∅ ∧ 𝐴 ≠ 1o ∧ 𝐴 ≠ 2o ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ne0i | ⊢ ( 2o ∈ 𝐴 → 𝐴 ≠ ∅ ) | |
| 2 | 2on0 | ⊢ 2o ≠ ∅ | |
| 3 | el1o | ⊢ ( 2o ∈ 1o ↔ 2o = ∅ ) | |
| 4 | 2 3 | nemtbir | ⊢ ¬ 2o ∈ 1o |
| 5 | eleq2 | ⊢ ( 𝐴 = 1o → ( 2o ∈ 𝐴 ↔ 2o ∈ 1o ) ) | |
| 6 | 4 5 | mtbiri | ⊢ ( 𝐴 = 1o → ¬ 2o ∈ 𝐴 ) |
| 7 | 6 | necon2ai | ⊢ ( 2o ∈ 𝐴 → 𝐴 ≠ 1o ) |
| 8 | 2on | ⊢ 2o ∈ On | |
| 9 | 8 | onirri | ⊢ ¬ 2o ∈ 2o |
| 10 | eleq2 | ⊢ ( 𝐴 = 2o → ( 2o ∈ 𝐴 ↔ 2o ∈ 2o ) ) | |
| 11 | 9 10 | mtbiri | ⊢ ( 𝐴 = 2o → ¬ 2o ∈ 𝐴 ) |
| 12 | 11 | necon2ai | ⊢ ( 2o ∈ 𝐴 → 𝐴 ≠ 2o ) |
| 13 | 1 7 12 | 3jca | ⊢ ( 2o ∈ 𝐴 → ( 𝐴 ≠ ∅ ∧ 𝐴 ≠ 1o ∧ 𝐴 ≠ 2o ) ) |
| 14 | nesym | ⊢ ( 𝐴 ≠ 2o ↔ ¬ 2o = 𝐴 ) | |
| 15 | 14 | biimpi | ⊢ ( 𝐴 ≠ 2o → ¬ 2o = 𝐴 ) |
| 16 | 15 | 3ad2ant3 | ⊢ ( ( 𝐴 ≠ ∅ ∧ 𝐴 ≠ 1o ∧ 𝐴 ≠ 2o ) → ¬ 2o = 𝐴 ) |
| 17 | simp1 | ⊢ ( ( 𝐴 ≠ ∅ ∧ 𝐴 ≠ 1o ∧ 𝐴 ≠ 2o ) → 𝐴 ≠ ∅ ) | |
| 18 | simp2 | ⊢ ( ( 𝐴 ≠ ∅ ∧ 𝐴 ≠ 1o ∧ 𝐴 ≠ 2o ) → 𝐴 ≠ 1o ) | |
| 19 | 17 18 | nelprd | ⊢ ( ( 𝐴 ≠ ∅ ∧ 𝐴 ≠ 1o ∧ 𝐴 ≠ 2o ) → ¬ 𝐴 ∈ { ∅ , 1o } ) |
| 20 | df2o3 | ⊢ 2o = { ∅ , 1o } | |
| 21 | 20 | eleq2i | ⊢ ( 𝐴 ∈ 2o ↔ 𝐴 ∈ { ∅ , 1o } ) |
| 22 | 19 21 | sylnibr | ⊢ ( ( 𝐴 ≠ ∅ ∧ 𝐴 ≠ 1o ∧ 𝐴 ≠ 2o ) → ¬ 𝐴 ∈ 2o ) |
| 23 | 16 22 | jca | ⊢ ( ( 𝐴 ≠ ∅ ∧ 𝐴 ≠ 1o ∧ 𝐴 ≠ 2o ) → ( ¬ 2o = 𝐴 ∧ ¬ 𝐴 ∈ 2o ) ) |
| 24 | pm4.56 | ⊢ ( ( ¬ 2o = 𝐴 ∧ ¬ 𝐴 ∈ 2o ) ↔ ¬ ( 2o = 𝐴 ∨ 𝐴 ∈ 2o ) ) | |
| 25 | 23 24 | sylib | ⊢ ( ( 𝐴 ≠ ∅ ∧ 𝐴 ≠ 1o ∧ 𝐴 ≠ 2o ) → ¬ ( 2o = 𝐴 ∨ 𝐴 ∈ 2o ) ) |
| 26 | 8 | onordi | ⊢ Ord 2o |
| 27 | ordtri2 | ⊢ ( ( Ord 2o ∧ Ord 𝐴 ) → ( 2o ∈ 𝐴 ↔ ¬ ( 2o = 𝐴 ∨ 𝐴 ∈ 2o ) ) ) | |
| 28 | 26 27 | mpan | ⊢ ( Ord 𝐴 → ( 2o ∈ 𝐴 ↔ ¬ ( 2o = 𝐴 ∨ 𝐴 ∈ 2o ) ) ) |
| 29 | 25 28 | imbitrrid | ⊢ ( Ord 𝐴 → ( ( 𝐴 ≠ ∅ ∧ 𝐴 ≠ 1o ∧ 𝐴 ≠ 2o ) → 2o ∈ 𝐴 ) ) |
| 30 | 13 29 | impbid2 | ⊢ ( Ord 𝐴 → ( 2o ∈ 𝐴 ↔ ( 𝐴 ≠ ∅ ∧ 𝐴 ≠ 1o ∧ 𝐴 ≠ 2o ) ) ) |