This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An ordinal that is not 0, 1, or 2 contains 2. (Contributed by BTernaryTau, 1-Dec-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ord2eln012 | |- ( Ord A -> ( 2o e. A <-> ( A =/= (/) /\ A =/= 1o /\ A =/= 2o ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ne0i | |- ( 2o e. A -> A =/= (/) ) |
|
| 2 | 2on0 | |- 2o =/= (/) |
|
| 3 | el1o | |- ( 2o e. 1o <-> 2o = (/) ) |
|
| 4 | 2 3 | nemtbir | |- -. 2o e. 1o |
| 5 | eleq2 | |- ( A = 1o -> ( 2o e. A <-> 2o e. 1o ) ) |
|
| 6 | 4 5 | mtbiri | |- ( A = 1o -> -. 2o e. A ) |
| 7 | 6 | necon2ai | |- ( 2o e. A -> A =/= 1o ) |
| 8 | 2on | |- 2o e. On |
|
| 9 | 8 | onirri | |- -. 2o e. 2o |
| 10 | eleq2 | |- ( A = 2o -> ( 2o e. A <-> 2o e. 2o ) ) |
|
| 11 | 9 10 | mtbiri | |- ( A = 2o -> -. 2o e. A ) |
| 12 | 11 | necon2ai | |- ( 2o e. A -> A =/= 2o ) |
| 13 | 1 7 12 | 3jca | |- ( 2o e. A -> ( A =/= (/) /\ A =/= 1o /\ A =/= 2o ) ) |
| 14 | nesym | |- ( A =/= 2o <-> -. 2o = A ) |
|
| 15 | 14 | biimpi | |- ( A =/= 2o -> -. 2o = A ) |
| 16 | 15 | 3ad2ant3 | |- ( ( A =/= (/) /\ A =/= 1o /\ A =/= 2o ) -> -. 2o = A ) |
| 17 | simp1 | |- ( ( A =/= (/) /\ A =/= 1o /\ A =/= 2o ) -> A =/= (/) ) |
|
| 18 | simp2 | |- ( ( A =/= (/) /\ A =/= 1o /\ A =/= 2o ) -> A =/= 1o ) |
|
| 19 | 17 18 | nelprd | |- ( ( A =/= (/) /\ A =/= 1o /\ A =/= 2o ) -> -. A e. { (/) , 1o } ) |
| 20 | df2o3 | |- 2o = { (/) , 1o } |
|
| 21 | 20 | eleq2i | |- ( A e. 2o <-> A e. { (/) , 1o } ) |
| 22 | 19 21 | sylnibr | |- ( ( A =/= (/) /\ A =/= 1o /\ A =/= 2o ) -> -. A e. 2o ) |
| 23 | 16 22 | jca | |- ( ( A =/= (/) /\ A =/= 1o /\ A =/= 2o ) -> ( -. 2o = A /\ -. A e. 2o ) ) |
| 24 | pm4.56 | |- ( ( -. 2o = A /\ -. A e. 2o ) <-> -. ( 2o = A \/ A e. 2o ) ) |
|
| 25 | 23 24 | sylib | |- ( ( A =/= (/) /\ A =/= 1o /\ A =/= 2o ) -> -. ( 2o = A \/ A e. 2o ) ) |
| 26 | 8 | onordi | |- Ord 2o |
| 27 | ordtri2 | |- ( ( Ord 2o /\ Ord A ) -> ( 2o e. A <-> -. ( 2o = A \/ A e. 2o ) ) ) |
|
| 28 | 26 27 | mpan | |- ( Ord A -> ( 2o e. A <-> -. ( 2o = A \/ A e. 2o ) ) ) |
| 29 | 25 28 | imbitrrid | |- ( Ord A -> ( ( A =/= (/) /\ A =/= 1o /\ A =/= 2o ) -> 2o e. A ) ) |
| 30 | 13 29 | impbid2 | |- ( Ord A -> ( 2o e. A <-> ( A =/= (/) /\ A =/= 1o /\ A =/= 2o ) ) ) |