This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An ordinal that is not 0 or 1 contains 1. (Contributed by BTernaryTau, 1-Dec-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ord1eln01 | ⊢ ( Ord 𝐴 → ( 1o ∈ 𝐴 ↔ ( 𝐴 ≠ ∅ ∧ 𝐴 ≠ 1o ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ne0i | ⊢ ( 1o ∈ 𝐴 → 𝐴 ≠ ∅ ) | |
| 2 | 1on | ⊢ 1o ∈ On | |
| 3 | 2 | onirri | ⊢ ¬ 1o ∈ 1o |
| 4 | eleq2 | ⊢ ( 𝐴 = 1o → ( 1o ∈ 𝐴 ↔ 1o ∈ 1o ) ) | |
| 5 | 3 4 | mtbiri | ⊢ ( 𝐴 = 1o → ¬ 1o ∈ 𝐴 ) |
| 6 | 5 | necon2ai | ⊢ ( 1o ∈ 𝐴 → 𝐴 ≠ 1o ) |
| 7 | 1 6 | jca | ⊢ ( 1o ∈ 𝐴 → ( 𝐴 ≠ ∅ ∧ 𝐴 ≠ 1o ) ) |
| 8 | el1o | ⊢ ( 𝐴 ∈ 1o ↔ 𝐴 = ∅ ) | |
| 9 | 8 | biimpi | ⊢ ( 𝐴 ∈ 1o → 𝐴 = ∅ ) |
| 10 | 9 | necon3ai | ⊢ ( 𝐴 ≠ ∅ → ¬ 𝐴 ∈ 1o ) |
| 11 | nesym | ⊢ ( 𝐴 ≠ 1o ↔ ¬ 1o = 𝐴 ) | |
| 12 | 11 | biimpi | ⊢ ( 𝐴 ≠ 1o → ¬ 1o = 𝐴 ) |
| 13 | 10 12 | anim12ci | ⊢ ( ( 𝐴 ≠ ∅ ∧ 𝐴 ≠ 1o ) → ( ¬ 1o = 𝐴 ∧ ¬ 𝐴 ∈ 1o ) ) |
| 14 | pm4.56 | ⊢ ( ( ¬ 1o = 𝐴 ∧ ¬ 𝐴 ∈ 1o ) ↔ ¬ ( 1o = 𝐴 ∨ 𝐴 ∈ 1o ) ) | |
| 15 | 13 14 | sylib | ⊢ ( ( 𝐴 ≠ ∅ ∧ 𝐴 ≠ 1o ) → ¬ ( 1o = 𝐴 ∨ 𝐴 ∈ 1o ) ) |
| 16 | 2 | onordi | ⊢ Ord 1o |
| 17 | ordtri2 | ⊢ ( ( Ord 1o ∧ Ord 𝐴 ) → ( 1o ∈ 𝐴 ↔ ¬ ( 1o = 𝐴 ∨ 𝐴 ∈ 1o ) ) ) | |
| 18 | 16 17 | mpan | ⊢ ( Ord 𝐴 → ( 1o ∈ 𝐴 ↔ ¬ ( 1o = 𝐴 ∨ 𝐴 ∈ 1o ) ) ) |
| 19 | 15 18 | imbitrrid | ⊢ ( Ord 𝐴 → ( ( 𝐴 ≠ ∅ ∧ 𝐴 ≠ 1o ) → 1o ∈ 𝐴 ) ) |
| 20 | 7 19 | impbid2 | ⊢ ( Ord 𝐴 → ( 1o ∈ 𝐴 ↔ ( 𝐴 ≠ ∅ ∧ 𝐴 ≠ 1o ) ) ) |