This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An ordinal that is not 0 or 1 contains 1. (Contributed by BTernaryTau, 1-Dec-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ord1eln01 | |- ( Ord A -> ( 1o e. A <-> ( A =/= (/) /\ A =/= 1o ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ne0i | |- ( 1o e. A -> A =/= (/) ) |
|
| 2 | 1on | |- 1o e. On |
|
| 3 | 2 | onirri | |- -. 1o e. 1o |
| 4 | eleq2 | |- ( A = 1o -> ( 1o e. A <-> 1o e. 1o ) ) |
|
| 5 | 3 4 | mtbiri | |- ( A = 1o -> -. 1o e. A ) |
| 6 | 5 | necon2ai | |- ( 1o e. A -> A =/= 1o ) |
| 7 | 1 6 | jca | |- ( 1o e. A -> ( A =/= (/) /\ A =/= 1o ) ) |
| 8 | el1o | |- ( A e. 1o <-> A = (/) ) |
|
| 9 | 8 | biimpi | |- ( A e. 1o -> A = (/) ) |
| 10 | 9 | necon3ai | |- ( A =/= (/) -> -. A e. 1o ) |
| 11 | nesym | |- ( A =/= 1o <-> -. 1o = A ) |
|
| 12 | 11 | biimpi | |- ( A =/= 1o -> -. 1o = A ) |
| 13 | 10 12 | anim12ci | |- ( ( A =/= (/) /\ A =/= 1o ) -> ( -. 1o = A /\ -. A e. 1o ) ) |
| 14 | pm4.56 | |- ( ( -. 1o = A /\ -. A e. 1o ) <-> -. ( 1o = A \/ A e. 1o ) ) |
|
| 15 | 13 14 | sylib | |- ( ( A =/= (/) /\ A =/= 1o ) -> -. ( 1o = A \/ A e. 1o ) ) |
| 16 | 2 | onordi | |- Ord 1o |
| 17 | ordtri2 | |- ( ( Ord 1o /\ Ord A ) -> ( 1o e. A <-> -. ( 1o = A \/ A e. 1o ) ) ) |
|
| 18 | 16 17 | mpan | |- ( Ord A -> ( 1o e. A <-> -. ( 1o = A \/ A e. 1o ) ) ) |
| 19 | 15 18 | imbitrrid | |- ( Ord A -> ( ( A =/= (/) /\ A =/= 1o ) -> 1o e. A ) ) |
| 20 | 7 19 | impbid2 | |- ( Ord A -> ( 1o e. A <-> ( A =/= (/) /\ A =/= 1o ) ) ) |