This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The ordered power series structure is a totally ordered set. (Contributed by Mario Carneiro, 10-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | opsrso.o | ⊢ 𝑂 = ( ( 𝐼 ordPwSer 𝑅 ) ‘ 𝑇 ) | |
| opsrso.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) | ||
| opsrso.r | ⊢ ( 𝜑 → 𝑅 ∈ Toset ) | ||
| opsrso.t | ⊢ ( 𝜑 → 𝑇 ⊆ ( 𝐼 × 𝐼 ) ) | ||
| opsrso.w | ⊢ ( 𝜑 → 𝑇 We 𝐼 ) | ||
| opsrso.l | ⊢ ≤ = ( lt ‘ 𝑂 ) | ||
| opsrso.b | ⊢ 𝐵 = ( Base ‘ 𝑂 ) | ||
| Assertion | opsrso | ⊢ ( 𝜑 → ≤ Or 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opsrso.o | ⊢ 𝑂 = ( ( 𝐼 ordPwSer 𝑅 ) ‘ 𝑇 ) | |
| 2 | opsrso.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) | |
| 3 | opsrso.r | ⊢ ( 𝜑 → 𝑅 ∈ Toset ) | |
| 4 | opsrso.t | ⊢ ( 𝜑 → 𝑇 ⊆ ( 𝐼 × 𝐼 ) ) | |
| 5 | opsrso.w | ⊢ ( 𝜑 → 𝑇 We 𝐼 ) | |
| 6 | opsrso.l | ⊢ ≤ = ( lt ‘ 𝑂 ) | |
| 7 | opsrso.b | ⊢ 𝐵 = ( Base ‘ 𝑂 ) | |
| 8 | 1 2 3 4 5 | opsrtos | ⊢ ( 𝜑 → 𝑂 ∈ Toset ) |
| 9 | eqid | ⊢ ( le ‘ 𝑂 ) = ( le ‘ 𝑂 ) | |
| 10 | 7 9 6 | tosso | ⊢ ( 𝑂 ∈ Toset → ( 𝑂 ∈ Toset ↔ ( ≤ Or 𝐵 ∧ ( I ↾ 𝐵 ) ⊆ ( le ‘ 𝑂 ) ) ) ) |
| 11 | 10 | ibi | ⊢ ( 𝑂 ∈ Toset → ( ≤ Or 𝐵 ∧ ( I ↾ 𝐵 ) ⊆ ( le ‘ 𝑂 ) ) ) |
| 12 | 8 11 | syl | ⊢ ( 𝜑 → ( ≤ Or 𝐵 ∧ ( I ↾ 𝐵 ) ⊆ ( le ‘ 𝑂 ) ) ) |
| 13 | 12 | simpld | ⊢ ( 𝜑 → ≤ Or 𝐵 ) |