This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The ordered power series structure is a totally ordered set. (Contributed by Mario Carneiro, 10-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | opsrso.o | |- O = ( ( I ordPwSer R ) ` T ) |
|
| opsrso.i | |- ( ph -> I e. V ) |
||
| opsrso.r | |- ( ph -> R e. Toset ) |
||
| opsrso.t | |- ( ph -> T C_ ( I X. I ) ) |
||
| opsrso.w | |- ( ph -> T We I ) |
||
| opsrso.l | |- .<_ = ( lt ` O ) |
||
| opsrso.b | |- B = ( Base ` O ) |
||
| Assertion | opsrso | |- ( ph -> .<_ Or B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opsrso.o | |- O = ( ( I ordPwSer R ) ` T ) |
|
| 2 | opsrso.i | |- ( ph -> I e. V ) |
|
| 3 | opsrso.r | |- ( ph -> R e. Toset ) |
|
| 4 | opsrso.t | |- ( ph -> T C_ ( I X. I ) ) |
|
| 5 | opsrso.w | |- ( ph -> T We I ) |
|
| 6 | opsrso.l | |- .<_ = ( lt ` O ) |
|
| 7 | opsrso.b | |- B = ( Base ` O ) |
|
| 8 | 1 2 3 4 5 | opsrtos | |- ( ph -> O e. Toset ) |
| 9 | eqid | |- ( le ` O ) = ( le ` O ) |
|
| 10 | 7 9 6 | tosso | |- ( O e. Toset -> ( O e. Toset <-> ( .<_ Or B /\ ( _I |` B ) C_ ( le ` O ) ) ) ) |
| 11 | 10 | ibi | |- ( O e. Toset -> ( .<_ Or B /\ ( _I |` B ) C_ ( le ` O ) ) ) |
| 12 | 8 11 | syl | |- ( ph -> ( .<_ Or B /\ ( _I |` B ) C_ ( le ` O ) ) ) |
| 13 | 12 | simpld | |- ( ph -> .<_ Or B ) |